核型SVM】的更多相关文章

(本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SVM.即: 在这里我们计算这个向量内积有两种方法:一种是对Φ(x)给出明确的定义,分别算出两个高维向量,再做内积:另一种就是利用核函数,直接算出高维的内积.我们以一个例子来看这两种方法,定义一个二次转化: 我们可以直接计算出内积: 可以看出,最后的结果能够用x和x一撇表示出来,这就是一个核函数: 在这里,我们是…
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www.cnblogs.com/bourneli/p/4198839.html 这位博主总结的很详细:http://www.cnblogs.com/xbf9xbf/p/4617120.html 这节课提出了一个重要的概念--maxmum margin(它和hinge loss是线性SVM最重要的两个部分)…
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 SVM的问题描述 表示为正式的形式,就是: 1.3 推导点到平面的距离 因此,由于约束条件1,距离里面的绝对值可以去掉,原来的最优化问题变为: 1.4 将SVM问题写成更容易解决的形式 由于w和b乘以同样的倍数得到的平面不变.因此我们做一个放缩,规定: 因此问题就变为了: 在这里,我们发现第二个约束条件其实…
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是如何分类的,如下图,找到一条线,将两类训练数据点分开即可: PLA的最后的直线可能有很多条,那到底哪条好呢?好坏的标准则是其泛化性能,即在测试数据集上的正确率,如下,下面三条直线都能正确的分开训练数据,那到底哪个好呢?SVM就是解决这个问题的. SVM求解 直觉告诉我们最右的要好一些,因为测试数据的…
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 核技巧引入 如果要用SVM来做非线性的分类,我们采用的方法是将原来的特征空间映射到另一个更高维的空间,在这个更高维的空间做线性的SVM.即: 在这里我们计算这个向量内积有两种方法:一种是对Φ(x)给出明确的定义,分别算出两个高维向量,再做内积:另一种就是利用核函数,直接算出高维的内积.我们以一个例子来看这两种方法,定义一个二次转化: 我们可以直接计算出内积: 可以看出,最后的结果能够用x和x一撇表示出来,这就是一个核函数: 在这里,我们是…
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记,用于学习之后的一些总结. 首先,对于Aggregation模型,其基本思想就是使用不同的 g t 来合成最后的预测模型 G t . 对于合成的方式主要有四种: 方法 数学描述 1. 选择.选择最值得可信的 g t 来当做最终的模型,而这个 gt 可以使用validation set 来进行选择 $$G(x)…
本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average.non-uniform:linear/non-linear和condition的融合形式来获取更好地性能).动态融合方法learning(没有一堆的g set,而是通过online learning获取g,边学习g,变边进行融合,对照于blending中的uniform融合形式…
机器学习--支持向量机(SVM) 支持向量机(Support Vector Machine)广泛地应用于分类问题,回归问题和异常检测问题.支持向量机一个很好的性质是其与凸优化问题相对应,局部最优解就是全局最优解. 本来打算大致写一下思想的.结果发现了已经有大神写的超级棒了.链接如下,看懂后来做笔记,http://blog.csdn.net/v_july_v/article/details/7624837 线性可分模型 如上图所示,两组数据中间存在一条直线,使得两组数据分别在线的两侧.这就是最简单…
遵循统一的机器学习框架理解SVM 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了李宏毅教授讲解SVM的课程和李航大大的统计学习方法. 二.理解 统一的机器学习框架(MLA): 1.模型(Model) 2.策略(Loss) 3.算法(Algorithm) 按照如上所说框架,SVM最核心的就是使用了 Hinge Loss 和 核方法 . SVM: Hinge Loss + Kernel Method Model 给定数据集 \((x^1,…
前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思路混乱.所以我对SVM的整理会分为四篇(暂定为四篇)学习,不足之处,请多多指导. 四篇分别为: Python机器学习笔记:SVM(1)——SVM概述 Python机器学习笔记:SVM(2)——SVM核函数 Python机器学习笔记:SVM(3)——证明SVM Python机器学习笔记:SVM(4)—…