leecode 树的平衡判定 java】的更多相关文章

以前写过c++版本的,感觉java写的好舒心啊/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isBalanced(TreeNode root) { if(root==null) re…
https://oj.leetcode.com/problems/validate-binary-search-tree/ 1.中序遍历是否有序 /** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private in…
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B…
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树,又叫二叉搜索树,是一种有顺序有规律的树结构.它可以有以下几个特征来定义它: (1)首先它是一个二叉树,具备二叉树的所有特性,他可以有左右子节点(左右孩子),可以进行插入,删除,遍历等操作: (2)如果根节点有左子树,则左子树上的所有节点的值均小于根节点上的值,如果根节点有右子树,则有字数上的所有节…
本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lgN和N之间的,如果是N的的话,显然效率很低,不是我们需要的:但是在实际情况中,BST的高度h = N的情况却经常出现,例如下图所示.在BST中search,insert的running time都等于BST的高度h,我们肯定希望高度h越小越好,best case就是lgN.下图的example 2的…
学习数据结构应该是一个循序渐进的过程: 当我们学习数组时,我们要体会数组的优点:仅仅通过下标就可以访问我们要找的元素(便于查找). 此时,我们思考:假如我要在第一个元素前插入一个新元素?采用数组需要挪动整个数组,且计算机找一块数组大小的连续空间是否容易呢??? 此时,我们不得不学习链表,学习了链表,很容易的,插入与删除变的高效率了. 但此时我们如果想高效的访问元素,怎么办??(我们没有办法再通过下标的方式了,因为没有下标了),我们不得不按照顺序查找,无疑这也是低效率的. 假如,我们希望采用一种结…
特别声明: 博文主要是学习过程中的知识整理,以便之后的查阅回顾.部分内容来源于网络(如有摘录未标注请指出).内容如有差错,也欢迎指正! 系列文章: 1. 标准Trie字典树学习一:原理解析 2.标准Trie字典树学习二:Java实现方式之一 Trie树基于Java的一种简单实现, 上代码. 1. 定义节点类TrieNode /** * TrieNode 节点类 * @author Konrad created on 2017/10/28 */ public class TrieNode { pr…
AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子.那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高度差是否为1,并且子树也遵循这个原则.这里我们可以用递归的方法来判断这颗二叉树是否为平衡二叉树,看他的左右子树之差是否不超过1.代码如下: bool IsBalance(Node* parent)    {        if (parent == NULL)            return t…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
定义 一颗m阶B+树满足以下几个条件: 1.除根节点外的节点的关键字个数最大为m-1,最小为m/2 2.除叶节点外的每个节点的孩子节点的数目为该节点关键字个数加一,这些孩子节点的的关键字的范围与父节点关键字的大小对应(这个看图才看的清楚) 3.叶子节点存放着所有的关键字,叶子节点间按关键字的大小用指针相互连接.内部节点以叶子节点的关键字的最小值作为索引 B+树的优势 B+树相较于B树最大的优势在于数据全部都存在于叶子节点,叶子节点间以指针相互连接,这样在进行按照索引的范围查找的时候就只需要遍历前…