前言 一段程序最容易出错的就是在判断或者是情况分类的边界地方,所以,应该对于许多判断或者是情况分类的边界要格外的注意.下面,就分析下STL中红黑树的迭代器的各种边界情况.(注意:分析中STL使用的版本是SGI STL,由于不同的版本的STL具体实现细节不一样,所以可能会有出入). 一.begin()获取第一个迭代器的自减 begin()函数获取的是一个容器的首迭代器,指向容器中的第一个元素(这里的第一个不一定是指储存顺序(物理)上的第一个,一般是指逻辑上的第一个,在红黑树中是指树中的最左节点).…
STL提供了许多好用的数据结构与算法,使我们不必为做许许多多的重复劳动.STL里实现了一个树结构-Red-Black Tree,它也是STL里唯一实现的一个树状数据结构,并且它是map, multimap,set,multiset的底层实现,如果学会了Red-Black Tree,那么对我们高效的运用STL是很有帮助的. 1. 什么是红黑树 红黑树是二叉查找树的一种,由于它能够保证树的高度比较底,所以是一种性能较好的查找树.它需要满足以下几条性质: 1.每个结点或是红的,或是黑的 2.根结点是黑…
红黑树(Red-Black Tree) 红黑树是一种BST,但是每个节点上增加一个存储位表示该节点的颜色(R或者B):通过对任何一条从root到leaf的路径上节点着色方式的显示,红黑树确保所有路径的差值不会超过一倍,最终使得BST接近平衡: 红黑树内每个节点包含五个属性:color, key, left, right和p,p表示指向父亲节点的指针:一棵BST需要同时满足下述五个性质才能称作红黑树: 每个节点只能是红色或者黑色节点中的一种: 根节点必须是黑色: 每个叶节点(NULL)必须是黑色:…
链表=>二叉树=>平衡二叉树=>红黑树=>B-Tree=>B+Tree 1.链表 链表结构是由许多节点构成的,每个节点都包含两部分: 数据部分:保存该节点的实际数据. 地址部分:保存的是下一个节点的地址. 链表的特点: 结点在存储器中的位置是任意的,即逻辑上相邻的数 据元素在物理上不一定相邻 访问时只能通过头指针进入链表,并通过每个结点的 指针域向后扫描其余结点,所以寻找第一个结点和最后一 个结点所花费的时间不等 链表的优点: 数据元素的个数可以自由扩充 .插入.删除等操作不…
R-B Tree简介 R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). 红黑树的特性:(1)每个节点或者是黑色,或者是红色.(2)根节点是黑色.(3)每个叶子节点(NIL)是黑色. [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!](4)如果一个节点是红色的,则它的子节点必须是黑色的.(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点.…
看到一篇很好的文章 文章来源:http://www.360doc.com/content/15/0730/00/14359545_488262776.shtml 红黑树是一种高效的索引树,多于用关联数组.STL容器的数据结构中.说到红黑树不得不提下二分查找树和AVL树.二分查找树的时间复杂度为O(h)(h为树的高度),如果树的高度较低,这些集合操作会很快,但是如果树的高度很高时,效率就会很低,特别是当节点n一定时,树的高度有时会很大,当然最好的情况是我们希望树的高度为lg(n),于是我们可以对查…
2-3 tree 2-3树节点: null节点,null节点到根节点的距离都是相同的,所以2-3数是平衡树 2叉节点,有两个分树,节点中有一个元素,左树元素更小,右树元素节点更大 3叉节点,有三个子树,节点中有两个元素,左树元素更小,右树元素更大,中间树介于两个父元素之间. 插入操作如下图所示 红黑树 红黑树可以理解为实现了2-3树的BST(binary search tree),它是一个自平衡树,保证在最坏的情况下的操作也是O(lg(n)) 特性: 每个节点有一个颜色属性(红或黑) 根节点是黑…
红黑树概念 特殊的二叉查找树,每个节点上都有存储位表示节点的颜色是红(Red)或黑(Black).时间复杂度是O(lgn),效率高. 特性: (1)每个节点或者是黑色,或者是红色. (2)根节点是黑色. (3)每个叶子节点(NIL)是黑色.(只为空(NIL或null)的节点) (4)如果一个节点是红色的,则它的子节点必须是黑色的.(黑结点可连续,红结点不能连续) (5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点.   定理:一棵含有n个节点的红黑树的高度至多为2log(n+1)…
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗自平衡的排序二叉树.我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小于它的右子节点.按照这个基本性质使得树的检索效率大大提高.我们知道在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如:AVL,SBT,伸展树,TREAP ,红黑树等等…
红黑树相比平衡二叉树(AVL)是一种弱平衡树,且具有以下特性: 1.每个节点非红即黑; 2.根节点是黑的; 3.每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4.如图所示,如果一个节点是红的,那么它的两儿子都是黑的; 5.对于任意节点而言,其到叶子点树NULL指针的每条路径都包含相同数目的黑节点; 6.每条路径都包含相同的黑节点…
https://github.com/xieqing/red-black-tree A Red-black Tree Implementation In C There are several choices when implementing red-black trees: store parent reference or not recursive or non-recursive (iterative) do top-down splits or bottom-up splits (o…
概要 红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到.之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现代码,后序章节再分别给出C++和Java版本的实现.还是那句话,三种实现原理相同,择其一了解即可:若文章有错误或不足的地方,望不吝指出! 目录1. 红黑树的介绍2. 红黑树的C实现(代码说明)3. 红黑树的C实现(完整源码)4. 红黑树的C测试程序 转载请注明出处:http://www.cnblog…
概要 前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树.本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证.若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章. 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624202.html 更多内容:数据结构与算法系列 目录 (01) 红黑树(一)之 原理和算法详细介绍(02) 红黑树(二)之 C语言的实现(03) 红黑树(三)之 Linux…
rbtree.h #ifndef _RED_BLACK_TREE_H_ #define _RED_BLACK_TREE_H_ #define RED 0 // 红色节点 #define BLACK 1 // 黑色节点 typedef int Type; // 红黑树的节点 typedef struct RBTreeNode{ unsigned char color; // 颜色(RED 或 BLACK) Type key; // 关键字(键值) struct RBTreeNode *left;…
二次联通门 : luogu P3369 [模板]普通平衡树(Treap/SBT) 近几天闲来无事...就把各种平衡树都写了一下... 下面是红黑树(Red Black Tree) 喜闻乐见拿到了luogu,COGS的rank1 QAQ rank1没啦!!!被树状数组艹啦!!! 10.11 Updata 压了压行233333 #include <cstdio> #include <iostream> #define Max 100001 #define Red true #defin…
前言 没有必要过度关注本文中二叉树的增删改导致的结构改变,规则操作什么的了解一下就好,看不下去就跳过,本文过多的XX树操作图片纯粹是为了作为规则记录,该文章主要目的是增强下个人对各种常用XX树的设计及缘由的了解,也从中了解到常用的实现案例使用XX树实现的原因. 数据在计算机中的存储结构主要为顺序存储结构.链式存储结构.索引存储结构.散列存储结构,其中链式存储结构最常见的示例是链表与树,链式存储结构主要有以下特点: 优点:逻辑相邻的节点物理上不必相邻,插入.删除灵活,只需改变节点中的指针指向 缺点…
(一)红黑树(Red-Black Tree) http://www.cnblogs.com/skywang12345/p/3245399.html#a1 它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). 红黑树的特性: (1)每个节点或者是黑色,或者是红色.(2)根节点是黑色.(3)每个叶子节点(NIL)是黑色. [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!](4)如果一个节点是红色的,则它的子节点必须是黑色的.(5)从…
一.学习红黑树前的准备: 熟悉基础数据结构 了解二叉树概念 二.红黑树的规则和规则分析: 根节点是黑色的 所有叶子节点(Null)是黑色的,一般会认定节点下空节点全部为黑色 如果节点为红色,那么子节点全部为黑色 从某一节点出发,到达叶子节点的所有分支上,黑色节点的数量相同 由规则4引出的一个定义,从根节点到叶子节点的黑色节点数量成为 树的黑色高度.我们会发现由于红色节点下全部为黑色节点,那么最极端的情况就是,根节点出发,左子树全部为黑色节点,右子树为红色-黑色轮换,这样设想下不难发现,树的最长路…
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B…
红黑树是平衡二叉查找树的一种.为了深入理解红黑树,我们需要从二叉查找树开始讲起. BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大.它的高度决定了它的查找效率. 在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N).当它的高度为logN+1时,我们就说二叉查找树是平衡的. BST的查找操作 T  key = a search key Node roo…
作者:美团点评技术团队 链接:https://zhuanlan.zhihu.com/p/24367771 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 红黑树是平衡二叉查找树的一种.为了深入理解红黑树,我们需要从二叉查找树开始讲起. BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大.它的高度决定了它的查找效率. 在理想的情况下,二叉查找树增删查改的时间复杂度为O(l…
在此之前,我没有了解过红黑树以及AVL tree,真是孤陋寡闻.如果你也在学习的话,我们一起进步. 如果,你很急,那么只看红色加粗即可. 1.红黑树(RB-tree) 红黑树是一种特殊的二叉搜索树,特殊在它的性质.它是SGI STL(gcc编译器使用)唯一实现的搜寻树,作为关联式容器(至少有set, map, multiset)的底部机制之用. 性质: 节点非黑即红. 根节点是黑色. 树尾端NULL节点,是黑色. 每个红色节点的两个子节点都是黑色.(从每个叶子到根的所有路径上不能有两个连续的红色…
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树是一种近似平衡的二叉查找树,从2-3树或2-3-4树衍生而来.通过对二叉树节点进行染色,染色为红或黑节点,来模仿2-3树或2-3-4树的3节点和4节点,从而让树的高度减小.2-3-4树对照实现的红黑树是普通的红黑树,而2-3树对照实现的红黑树是一种变种,称为左倾红黑树,其更容易实现. 使用平衡树数据…
1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快.     于是我们需要构建出一种"平衡"的二叉搜索树.     红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质     与普通二叉搜索树不…
来源:史上最清晰的红黑树讲解(上) - CarpenterLee 作者:CarpenterLee(转载已获得作者许可,如需转载请与原作者联系) 文中所有图片点击之后均可查看大图! 史上最清晰的红黑树讲解(上) 本文github地址 本文以Java TreeMap为例,从源代码层面,结合详细的图解,剥茧抽丝地讲解红黑树(Red-Black tree)的插入,删除以及由此产生的调整过程. 总体介绍 Java TreeMap实现了SortedMap接口,也就是说会按照key的大小顺序对Map中的元素进…
本文以Java TreeMap为例,从源代码层面,结合详细的图解,剥茧抽丝地讲解红黑树(Red-Black tree)的插入,删除以及由此产生的调整过程. 总体介绍 Java TreeMap实现了SortedMap接口,也就是说会按照key的大小顺序对Map中的元素进行排序,key大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator). TreeMap底层通过红黑树(Red-Black tree)实现,也就意味着contain…
Java TreeMap实现了SortedMap接口,也就是说会按照key的大小顺序对Map中的元素进行排序,key大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator). TreeMap底层通过红黑树(Red-Black tree)实现,也就意味着containsKey(), get(), put(), remove()都有着log(n)的时间复杂度.其具体算法实现参照了<算法导论>. 出于性能原因,TreeMap是非同步…
红黑树 红黑树是一种特殊的二叉树,主要用它存储有序的数据,提供高效的数据检索,时间复杂度为O(lgn),每个节点都有一个标识位表示颜色,红色或黑色,有如下5种特性:1.每个节点要么红色,要么是黑色:2.根节点一定是黑色的:3.每个空叶子节点必须是黑色的:4.如果一个节点是红色的,那么它的子节点必须是黑色的:5.从一个节点到该节点的子孙节点的所有路径包含相同个数的黑色节点: 注:首先它是二叉树,所以还是要满足:左节点hash值<父节点<右节点 结构示意图 只要满足以上5个特性的二叉树都是红黑树,…
前面我们学习二叉搜索树的时候发如今一些情况下其高度不是非常均匀,甚至有时候会退化成一条长链,所以我们引用一些"平衡"的二叉搜索树.红黑树就是一种"平衡"的二叉搜索树,它通过在每一个结点附加颜色位和路径上的一些约束条件能够保证在最坏的情况下基本动态集合操作的时间复杂度为O(nlgn).以下会总结红黑树的性质,然后分析红黑树的插入操作,并给出一份完整代码. 先给出红黑树的结点定义: #define RED 1 #define BLACK 0 ///红黑树结点定义,与普通…
转载自:http://blog.csdn.net/quitepig/article/details/8041308 B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针…