知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真实值的可能性. http://www.cnblogs.com/zhsuiy/p/4822020.html 常说的概率是指给定参数后,预测即将发生的事件的可能性. 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,我们希望知道参数应该是多少. 最大似然概率,就是在…
1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the most likely function to explain a set of observed data. 在基本统计学中,通常给你一个模型来计算概率.例如,你可能被要求找出X大于2的概率,给定如下泊松分布:X ~ Poisson (2.4).在这个例子中,已经给定了你泊松分布的参数 λ(2.4),…
From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note. Much of the discussion in psychology surrounding Bayesian inference focuses on priors. Should we embrace priors, or should we be skeptical? When are…
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likelihood可以直接叫做最大可能性估计,这就好理解了,就是要求出最大的可能性(下的那个参数). 一些最基本的概念:总体X,样本x,分布P(x:θ),随机变量(连续.离散),模型参数,联合分布,条件分布 而似然函数在形式上,其实就是样本的联合密度:L(θ)= L(x1,x2,-,xn:θ)= ΠP(xi:θ)…
Abstract Bayesian networks are a powerful probabilistic representation, and their use for classification has received considerable attention. However, they tend to perform poorly when learned in the standard way. This is attributable to a mismatch be…
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每一个样本本身有n维特征. 再加上一个偏置项x0, 则每一个样本包括n+1维特征: x=[x0,x1,x2,⋯,xn]T 当中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了例如以下定义: 分类是监督学习的一个核心…
negative log likelihood文章目录negative log likelihood似然函数(likelihood function)OverviewDefinition离散型概率分布(Discrete probability distributions)连续型概率分布(Continuous probability distributions)最大似然估计(Maximum Likelihood Estimation,MLE)对数似然(log likelihood)负对数似然(ne…
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机…
转载自:http://eletva.com/tower/?p=186 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values.Loss Function中文损失函数,适用于用于统计,经济,机器学习…
目录 一. 接收机的概念 1.信号解调器 2.检测器 二. 相关解调器的解调过程及其原理 1.构造相关解调器 2.得到接收信号在基向量上的投影 3.相关器输出的性质 三.检测器的实现及其数学原理 1.MAP准则 2.ML准则 3.简化ML准则,实现检测器 学习<现代通信原理>(曹志刚)时,对其中相关接收机的近似阐述非常不解.借此机会,整理了大量课外资料,对相关接收机的原理有了比较清楚的认识. 一. 接收机的概念 接收机:由信号解调器和检测器组成. 1.信号解调器 功能:将接受波形\(r(t)\…
第四节  最大似然推导mse损失函数(深度解析最小二乘来源)(2) 上一节我们说了极大似然的思想以及似然函数的意义,了解了要使模型最好的参数值就要使似然函数最大,同时损失函数(最小二乘)最小,留下了一个问题,就是这两个因素或者目的矛盾吗?今天我们就接着上面的问题继续解剖下去. 我们再来回顾下似然函数: 所谓似然函数就是一个大的乘项,它有多少项,取决于有多少个训练集的样本,因为它是判断训练集上发生的总概率最大的这么一个总似然函数.我们分析一下似然函数的取值由哪些因素确定?是常数,虽然是未知数,但是…
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函数. 而累计分布函数是概率分布函数的积分. 注意区分 从数学上看,累计分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率.这个意义很容易理解. 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率.如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的…
frequentism-and-bayesianism-chs 频率主义和贝叶斯主义——一个实用的介绍 此notebook最初出现在博客Pythonic Perambulations的文章.BSD licensed. 这个系列共4个部分:中文版Part I Part II Part III Part IV,英文版Part I Part II Part III Part IV   科学工作者学习统计学的第一件事儿是要知道有两种不同的方法论:频率主义和贝叶斯主义.尽管这点很重要,但很多科学工作者从来…
假设我们有一张房子属性及其价格之间的关系表(如下图所示) ,根据这些数据如何估计其他房子的价格?我们的第一个反应肯定是参考属性相似的房子的价格.在属性较少时这个方法还行得通,属性太复杂时就不那么简单了.很显然,我们最终目的是根据这些数据学习到房子属性和价格之间的某种关系,然后利用这种关系预测其他房子的价格. 我们将问题形式化,给出如下相关说明.训练集—用于学习这种关系的数据集合:测试集—用于测试所学关系准确性的数据集合:\(x\)—输入变量/特征:\(y\)—目标变量:\((x,y)\)—单个训…
"generative algorithm models how the data was generated in order to categorize a signal. It asks the question: based on my generation assumptions, which category is most likely to generate this signal?discriminative algorithm does not care about how…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生的条件概率 P(A), P(B) – 独立事件A和独立事件B的边缘概率 顺便提一下,上式中的分母P(B)可以根据全概率公式分解为: Bayesian inferenc(贝叶斯推断) 贝叶斯定理的许多应用之一就是…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}.整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元…
目录 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 导论 rugarch 简介 指定一个 \(\text{GARCH}(1, 1)\) 模型 模拟一个 GARCH 过程 拟合一个 \(\text{GARCH}(1,1)\) 模型 rugarch 中的优化与参数估计 优化器的选择 结论 在 R 中估计 GARCH 参数存在的问题(基于 rugarch 包) 本文翻译自<Problems in Estimating GARCH Parameters in R (Part 2…
文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidence 2-1 BIC approximation to log marginal likelihood 2-2贝叶斯因子 3先验 3-1 确定无信息先验分布的Jeffreys原则 3-2共轭先验Conjugate Priors 4Hierarchical Bayes 5Empirical Bayes…
Expectation Maximization (EM) 是一种以迭代的方式来解决一类特殊最大似然 (Maximum Likelihood) 问题的方法,这类问题通常是无法直接求得最优解,但是如果引入隐含变量,在已知隐含变量的值的情况下,就可以转化为简单的情况,直接求得最大似然解. 我们会看到,上一次说到的 Gaussian Mixture Model 的迭代求解方法可以算是 EM 算法最典型的应用,而最开始说的 K-means 其实也可以看作是 Gaussian Mixture Model…
从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,…
从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log0为0). 如果写代码实现熵的计算,则例如以下所看到的: //依据详细属性和值来计算熵 double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value,bool i…
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分布类型 PMF -> <font color='green'>discrete distributions</font>, while pdf -> <font color='green'>continuous distributions</font>…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
1.说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Latent Dirichlet Allocation>中介绍的LDA模型.用变分EM算法求解參数. 为了使代码在vs2013中执行.做了一些微小修改,但不影响原代码的逻辑. vs2013project可在我的资源中下载: http://download.csdn.net/detail/happyer88/8…
topic model本质上就一个套路,在doc-word user-url user-doc等关系中增加topic层,扩充为2层结构,一方面可以降维,另一方面挖掘深层次的关系,用户doc word user url的聚类. LDA的理论知识不介绍太多,基本就讲了原理以及推导两个内容,原理比较简单,推导过程貌似很简单,就一个变分加上一些参数估计的方法就搞定了,但是具体的细节还没明白,以后慢慢研究. 简单介绍下基本原理以及有意义的几个公式: plsa作为topic-model ,每篇文档对应一系列…
贝叶斯推断之最大后验概率(MAP) 本文详细记录贝叶斯后验概率分布的数学原理,基于贝叶斯后验概率实现一个二分类问题,谈谈我对贝叶斯推断的理解. 1. 二分类问题 给定N个样本的数据集,用\(X\)来表示,每个样本\(x_n\)有两个属性,最终属于某个分类\(t\) \(t=\left\{0,1\right\}\) \(\mathbf{x_n}=\begin{pmatrix}x_{n1} \\ x_{n2} \\ \end{pmatrix}\), 假设模型参数\(w=\begin{pmatrix}…
Ian J. Goodfellow 论文:https://arxiv.org/abs/1406.2661 两个网络:G(Generator),生成网络,接收随机噪声Z,通过噪声生成样本,G(z).D(Dicriminator),判别网络,判别样本是否真实,输入样本x,输出D(x)代表x真实概率,如果1,100%真实样本,如果0,代表不可能是真实样本. 训练过程,生成网络G尽量生成真实样本欺骗判别网络D,判别网络D尽量把G生成样本和真实样本分别开.理想状态下,G生成样本G(z),使D难以判断真假,…