EF与手写Model的区别以及联系】的更多相关文章

1.在数据库表名上,EF是随意的,但是如果是Model的话,就应该在建立数据库的时候考虑到讲数据库表名变为复数,如Movie.cs 数据库应该为Movies…
MVC3下的3种验证 (1):前台Jquery Validate脚本验证 引入脚本 <script src="../js/jquery.js" type="text/javascript"></script> <script src="../js/jquery.validate.js" type="text/javascript"></script>   编写规则和错误信息 $(…
一.手写ArrayList public class ArrayList { private Object[] elementData; //底层数组 private int size; //数组大小 public int size(){ /* * 返回数组大小 */ return size; } public ArrayList(){ /* * 无参构造器,通过显式调用含参构造器 */ ); } public ArrayList(int initialCapacity){ /* * 1.含参构…
扩展手写数字识别应用 识别并计算简单手写数学表达式 主要知识点 了解MNIST数据集 了解如何扩展数据集 实现手写算式计算器 简介 本文将介绍一例支持识别手写数学表达式并对其进行计算的人工智能应用的开发案例.本文的应用是基于前文"手写识别应用入门"中的基础应用进行扩展实现的.本文将通过这一案例,展示基本的数据整理和扩展人工智能模型的过程,以及介绍如何利用手写输入的特性来简化字符分割的过程.并且本文将演示如何利用Visual Studio Tools for AI进行批量推理,以便利用底…
最近一直在学习李宏毅老师的机器学习视频教程,学到和神经网络那一块知识的时候,我觉得单纯的学习理论知识过于枯燥,就想着自己动手实现一些简单的Demo,毕竟实践是检验真理的唯一标准!!!但是网上很多的与tensorflow或者神经网络相关的Demo教程都只是在验证官方程序的过程,而如何把这些程序变成自己可以真正利用的程序这一块的资料就比较少,就好比被“玩烂的"MNIST数据集(ML界的”hello world"),网上是有很多手写数字识别的教程,但那些利用的都是官方提供的数据集,这样就算验…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
  最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个“易学.易用”的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供了许多文档,而且还是中英双语具备,但是最关键的是报错了很难在网上找到相应的解决办法.为了明年备战百度的比赛,便开始学习以下PaddlePaddle. 1.安装 PaddlePaddle同样支持CUDA加速运算,但是如果没有NVIDIA的显卡,那就还是装CPU版本. CPU版本安装:pip insta…
一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像素值.65列是结果. 我们以64位像素值为特征进行多元分类,算法采用SDCA最大熵分类算法. 二.源码 先贴出全部代码: namespace MulticlassClassification_Mnist { class Program { static readonly string TrainDa…
上一篇我们提到了回归问题中的梯度下降算法,而且我们知道线性模型只能解决简单的线性回归问题,对于高维图片,线性模型不能完成这样复杂的分类任务.那么是不是线性模型在离散值预测或图像分类问题中就没有用武之地了呢? 本篇我们就套用regression中的部分机制来处理classification中的问题. 在这里首先介绍一下激活函数. 所谓激活函数,实际上就是引入非线性因子,将线性模型去线性化,增强模型的表达能力.ReLU激活函数是我要介绍的第一个激活函数,其定义式为φ(z)=max{0,z},图像表示…
在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但是这样的实践对机器学习的理解是大有裨益的.在大多数情况下,我们还是希望能多简单就多简单地去搭建网络模型,这同时也算对得起TensorFlow这个强大的工具了.本节,还是以手写数据集MNIST为例,利用TensorFlow2.0的keras高层API重现之前的网络. 一.数据的导入与预处理 关于这个过程,与上节…
@ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模型(mnist) 2.使用Keras搭建cnn训练mnist(train.py),训练部分源码如下: 3.训练结果保存成冻结模型(pb文件)(train.py),训练结果保存为冻结模型的源码如下: 4.python opencv调用冻结模型(cvcallpb.py) 三.LabVIEW OpenCV…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
首先明白 动态代理和静态代理的区别: 静态代理:①持有被代理类的引用  ② 代理类一开始就被加载到内存中了(非常重要) 动态代理:JDK中的动态代理中的代理类是动态生成的.并且生成的动态代理类为$Proxy0 静态代理实例1.创建一个接口: package proxy; public interface People { public void zhaoduixiang()throws Throwable; } 2.创建一个实现类,张三,张三能够吃饭,张三可以找对象 package proxy;…
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*2000,有0-9的10个数字,每5行为一个数字,总共50行,共有5000个手写数字.在opencv3.0版本中,图片存放位置为 /opencv/sources/samples/data/digits.png 我们首先要做的,就是把这5000个手写数字,一个个截取出来,每个数字块大小为20*20.直接将…
Zinnia库及其实现方法研究 (转) zinnia是一个开源的手写识别库.采用C++实现.具有手写识别,学习以及文字模型数据制作转换等功能. 项目地址 [http://zinnia.sourceforge.net ] License: NewBSD 作者对SVM很有研究. 比同类程序的效率要高效.(同类项目如tegaki) 我的目的是通过这个研究简单的手写输入实现方法 Zinnia库特点 SVM机实现 轻量级,可移植 线程安全,可供C,C++,Perl,Python,Ruby调用 每秒50-1…
倾述下感受:8天16次驳回.这个惨不忍睹. 好了不说了,说多了都是泪. 直接上代码 : 这个里面的字段我是用动软生成的,感觉自己手写哪些字段太浪费时间了,说多了都是泪 ajax.model层的代码: using System; namespace Ajax.Model { /// <summary> /// SM_Class:实体类(属性说明自动提取数据库字段的描述信息) /// </summary> [Serializable] public partial class SM_C…
上一篇文章中,我们介绍了Promise的基本使用,在这篇文章中,我们试着自己来写一个Promise,主要是学习Promise的内部机制,学习它的编程思想. !!!备注:本文写的不好,仅供自己学习之用,具体的实现过程建议看下面的参考文章.所以本文没有发布到博客园首页和其他地方 Promise API分析 正常使用方法 我们来看一个正常的使用: var p=new Promise(function(resolve,rejcet){ setTimeout(function(){ if(true){ r…
序列标注(sequence labelling),输入序列每一帧预测一个类别.OCR(Optical Character Recognition 光学字符识别). MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像.字线组合序列,序列对应单词.6800个,长度不超过14字母的单词.gzip压缩,内容用T…
tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html 前言 这篇博客将利用神经网络去训练MNIST数据集,通过学习到的模型去分类手写数字. 我会将本篇博客的jupyter notebook放在最后,方便你下载在线调试!推荐结合官方的tensorflow教程来看这个notebook! 1. MNIST数据集的导入 这里介绍一下MNIST,MNIST是在…
一.背景 maven是一个很好的代码构建工具,采用“约定优先于配置”的原则进行项目管理,相信很多的java开发者应该都了解maven并可能在工作当中都是通过maven来管理项目的,在创建的项目的时候,我们往往会使用maven内置的项目骨架也就是archetype来快速生成项目结构.但是在一个团队做开发的过程中,可能仅仅依靠maven预先提供的archetyp可能是不够的,团队之间协作有自己的定义方式,每个人的结构定义风格也不尽相同,在这样的背景下我们有必要去定义一个统一的代码骨架供团队使用,这样…
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/8027517.html 一.MNIST 运行 1)首先下载训练数据 在 http://yann.lecun.com/exdb/mnist/ 将四个包都下载下来,在下面代码的运行目录下创建MNIST_data目录,将四个包放进去 train-images-idx3-ubyte.gz: training s…
在上一篇博客[教你如何使用Java手写一个基于数组的队列]中已经介绍了队列,以及Java语言中对队列的实现,对队列不是很了解的可以我上一篇文章.那么,现在就直接进入主题吧. 这篇博客主要讲解的是如何使用单链表实现一个简单版的队列.单向链表队列是属于非循环队列,同时队列的长度是不受限制的,也就是说添加数据的速度比拉取数据的速度快时,队列的长度是无限增长的.单链队列其本质就是一个链表,只不过是在获取或添加数据的时候跟普通的链表有所区别,队列在获取数据的同时也将该节点删除,并且每次获取数据都是从表头获…
Http协议 1.深入概念 Http:HyperText Transfer Protocol,即是超文本传输协议. 2.浅出概念(使用浏览器访问服务器端网页时需要遵循的一系列规则) Http:将各种不同浏览器或各种自研客户端的文字信息组织在一起的网状文本数据. 协议:多方一起约定的一系列规则,然后大家活动必须遵循这些规则,就像法律大家必须遵循才能享受法律提供的保护. 举个栗子:我们平时去饭店吃饭通常会有以下几个步骤: 1.坐到合适的座位上. 2.服务员拿出菜单点餐. 3.服务员按照点餐菜单下单.…
AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出来的模型开始,和大家一起入门手写体识别. 在本教程结束后,会得到一个能用的AI应用,也许是你的第一个AI应用.虽然离实际使用还有较大的距离(具体差距在文章后面会分析),但会让你对AI应用有一个初步的认识,有能力逐步搭建出能够实际应用的模型. 建议和反馈,请发送到 https://github.com…
一.前述 Keras 适合快速体验 ,keras的设计是把大量内部运算都隐藏了,用户始终可以用theano或tensorflow的语句来写扩展功能并和keras结合使用. 二.安装 Pip install --upgrade keras 三.Keras模型之序列模型 序列模型属于通用模型的一种,因为很常见,所以这里单独列出来进行介绍,这种模型各层之间是依次顺序的线性关系,在第k层和第k+1层之间可以加上各种元素来构造神经网络这些元素可以通过一个列表来制定,然后作为参数传递给序列模型来生成相应的模…
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常用优化器之一 大多数情况下,adma速度较快,达到较优值迭代周期较少, 一般比SGD效果好 CNN应用于手写识别 import numpy as np from keras.datasets import mnist #将会从网络下载mnist数据集 from keras.utils import np_u…
通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Python) 运行程序后得的四个文件,再通过手写的图片判断识别概率 代码: import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request import numpy a…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集.验证集.测试集. #…