SVD实例】的更多相关文章

参考 intel MTK实例 https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/lapacke_dgesvd_row.c.htm http://www.netlib.org/lapack/explore-html/d0/dee/lapacke__dgesvd_8c.html https://blog.csdn.net/helei001/article/detai…
>> X = rand(5,7) X = 0.9797 0.1365 0.6614 0.5828 0.2259 0.2091 0.5678 0.2714 0.0118 0.2844 0.4235 0.5798 0.3798 0.7942 0.2523 0.8939 0.4692 0.5155 0.7604 0.7833 0.0592 0.8757 0.1991 0.0648 0.3340 0.5298 0.6808 0.6029 0.7373 0.2987 0.9883 0.4329 0.64…
SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: 很多情况下,数据的一小部分包含了数据的绝大部分信息,线性代数中有很多矩阵的分解技术可以将矩阵表示成新的易于处理的形式,不同的方法使用与不同的情况.最常见的就是SVD,SVD将数据分成三个矩阵U(mm),sigma(mn),VT(nn),这里得到的sigma是一个对角阵,其中对角元素为奇异值,并且它…
矩阵和图像的操作 (1)cvInRange函数 其结构 void cvInRange(//提取图像中在阈值中间的部分 const CvArr* src,//目标图像 const CvArr* lower,//阈值下限 const CvArr* upper,//阈值上限 CvArr* dst//结果图像 ); 实例代码 #include <cv.h> #include <highgui.h> #include <stdio.h> #include <iostream…
全文地址:http://www.mossle.com/docs/activiti/ Activiti 5.15 用户手册 Table of Contents 1. 简介 协议 下载 源码 必要的软件 JDK 6+ Eclipse Indigo 和 Juno 报告问题 试验性功能 内部实现类 2. 开始学习 一分钟入门 安装Activiti 安装Activiti数据库 引入Activiti jar和依赖 下一步 3. 配置 创建ProcessEngine ProcessEngineConfigur…
>> s = rand(5,7) s = 0.4186  0.8381  0.5028 0.1934 0.6979 0.4966 0.6602 0.8462  0.0196  0.7095 0.6822 0.3784 0.8998 0.3420 0.5252  0.6813  0.4289 0.3028 0.8600 0.8216 0.2897 0.2026  0.3795  0.3046 0.5417 0.8537 0.6449 0.3412 0.6721  0.8318  0.1897 0…
协同过滤(collaborative filtering) 推荐系统: 百度百科的定义是:它是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程主要有有以下几种推荐的方式: 基于内容的推荐 协同过滤 关联推荐 混合推荐 协同过滤 这里我们主要考虑的是协同过滤,这也是最经典的推荐算法.协同过滤的思想很简单,就是像我们平时需要找一部好看的电影最简单的方式就是找兴趣相同的人推荐. 相似度计算: 相似度的计算主要有以下几种方法: 基于欧氏距离 相似度…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领…
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很直观,而且极其有用.SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块.它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程. 首先来看一个对角矩阵, 几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射: 下图显示了这个映射的效果: 平面被横向…
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  …
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在…
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singul…
一.奇异值分解SVD 1.SVD原理 SVD将矩阵分为三个矩阵的乘积,公式: 中间矩阵∑为对角阵,对角元素值为Data矩阵特征值λi,且已经从大到小排序,即使去掉特征值小的那些特征,依然可以很好地重构出原始矩阵.如下图:其中阴影部分代表去掉小特征值,重构时的三个矩阵. 如果m代表商品个数,n代表用户个数,则U矩阵每行代表商品属性,现在通过降维U矩阵(取阴影部分)后,每个商品的属性可以用更低的维度表示(假设k维).这样当新来一个用户的商品推荐向量X,则可以根据公式X*U1*inv(S1)得到一个k…
SVD一般应用场景--推荐系统,图像压缩. 1.直观感受. SVD其实就是将矩阵分界,直观感受如图.就是将A矩阵分界成U,S,V三个矩阵相乘.一般推荐系统中用的多.S是对角阵,里面的特征值是从大到小排列的. 2.前述知识. 一个矩阵乘以一个向量结果还是一个向量,并且等于原始向量的倍,相当于对原始向量进行一个某个方向上的拉伸. 3.矩阵压缩 图1 图2 对图1,图2来说,假设m表示是样本个数,n表示特征个数,则抽取S特征中比较重要的特征值,(因为特征值是从大到小排列的,所以假如抽取前几个特征值作为…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不仅可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域. 我们首先回顾下特征值和特征向量的定义如下:                                                                     Ax=λx 其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特…
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如上,不能满足上式的. 二.协方差矩阵 方差(Variance)是度量一组数据分散的程度.方差是各个样本与样本均值的差的平方和的均值. 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度.如果两个变量的协方差为0,则统计学上认为二者线性无关.而方差是协方差的…
PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S…
一.奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征.先谈谈特征值分解吧: 1)特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就…
求矩阵的秩 设 ,已知r(A)=2,则参数x,y分别是 解:任意三阶子式=0,有二阶子式≠0,但是这些子式比较多,可以使用初等变换,因为初等变换不改变矩阵的秩,可以将矩阵通过初等行(列)变换,化为行阶梯矩阵,有几行不等于0,秩就是几. 行列式的转换                                Am×nx=0只有零解 <=> r(A)=n 特别地,A是n×n时,则Am×nx=0只有零解 <=> |A|≠0 Am×nx=0有非零解 <=> r(A)<…
MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看:Principal component analysis of raw data - mathworks [coeff,score,latent,tsquared,explained,mu] = pca(X) coeff = pca(X) returns the principal componen…
奇异值分解 SVD(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是特征分解在任意矩阵上的推广,SVD是在机器学习领域广泛应用的算法. 特征值和特征向量 定义:设 A 是 n 阶矩阵,若数 λ 和 n 维非零向量 x 满足 那么,数 λ 称为方阵 A 的特征值,x 称为 A 的对应于特征值 λ 的特征向量 说明:特征向量 x 不等于0,特征值问题仅仅针对方阵:n 阶方阵 A 的特征值,就是使得齐次线性方程组 (A-λE)x = 0 有非零解的 λ 值…
  降维(Dimensionality Reduction) 是机器学习中的一种重要的特征处理手段,它可以减少计算过程中考虑到的随机变量(即特征)的个数,其被广泛应用于各种机器学习问题中,用于消除噪声.对抗数据稀疏问题.它在尽可能维持原始数据的内在结构的前提下,得到一组描述原数据的,低维度的隐式特征(或称主要特征).简单来说,在高维数据中筛选出对我们有用的变量,减小计算复杂度提高模型训练效率和准确率,这就是我们要说的降维. MLlib机器学习库提供了两个常用的降维方法:奇异值分解(Singula…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singular  Value Decomposition,后面简称 SVD)是在线性代数中一种重要的矩阵分解,它不光可用在降维算法中(例如PCA算法)的特征分解,还可以用于推荐系统,以及自然语言处理等领域,在机器学习,信号处理,统计学等领域中有重要应用. 比如之前的学习的PCA,掌握了SVD原理后再去看PC…
本篇来说一下js中的属性: 1.静态属性 2.原型属性 3.实例属性 静态属性: function klass(){} var obj=new klass(); klass.count=0; klass.count++; console.log(obj.count);//undefined console.log(klass.count);//1 静态属性存在于对象中.它的访问方式只有:类名.count 一种方式,无法通过实例访问. 如:Math.PI 原型属性: 在讲解原型属性之前有必要先提一…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
最近自己实现了一个ZIP压缩数据的解压程序,觉得有必要把ZIP压缩格式进行一下详细总结,数据压缩是一门通信原理和计算机科学都会涉及到的学科,在通信原理中,一般称为信源编码,在计算机科学里,一般称为数据压缩,两者本质上没啥区别,在数学家看来,都是映射.一方面在进行通信的时候,有必要将待传输的数据进行压缩,以减少带宽需求:另一方面,计算机存储数据的时候,为了减少磁盘容量需求,也会将文件进行压缩,尽管现在的网络带宽越来越高,压缩已经不像90年代初那个时候那么迫切,但在很多场合下仍然需要,其中一个原因是…
前言 上一篇我们简单讲述了在EF Core1.1中如何进行迁移,本文我们来讲讲EF Core1.1中那些不为人知的事,细抠细节,从我做起. 显式创建DbContext实例 通过带OnConfiguring的构造函数 这个想必是我们最简单的方式了吧,通过调用继承自DbContext的类并且调用它的无参构造函数,同时我们需要谨记的时每当实例化时我们都需要将其释放也就是将其实例包裹在Using中.如下: using (var context = new EFCoreContext()) { } 接着通…
redis是现在主流的缓存工具了,因为使用简单.高效且对服务器要求较小,用于大数据量下的缓存 spring也提供了对redis的支持: org.springframework.data.redis.core.RedisTemplate 为了在springmvc环境中使用redis,官方推荐是和jedis结合使用,由jedis来管理连接这些 首先进行整合配置 1.properties文件 #############Common Redis configuration cache.redis.max…
流程(Activiti) 流程是完成一系列有序动作的概述.每一个节点动作的结果将对后面的具体操作步骤产生影响.信息化系统中流程的功能完全等同于纸上办公的层级审批,尤其在oa系统中各类电子流提现较为明显.一般的步骤为: ①   申请者发起申请. ②   各级领导审批.一般由低级别往高级别审批. ③   每一级别审批结果将影响或者决定申请结果.若下一节点非结束节点,此节点若审批通过将转给下一节点审批:若此节点审批不通过此次审批将被驳回修改申请或者直接结束. 图1  流程图实例 ④   当流程审批结束…
前面[UWP开发之Mvvmlight实践五:SuspensionManager中断挂起以及复原处理]章节已经提到过Template10,为了认识MvvmLight的区别特做了此实例. 原代码地址:https://github.com/NewBLife/UWP/tree/master/MvvmDemo/FileOperationDemo 应用主要功能: 本地任何文件多项选择添加 照相机图片添加 显示添加文件(.jpg.png.pdf.xls等)的缩略图 列表文件删除 默认程序显示添加后的文件 应用…