机器学习tensorflow框架初试】的更多相关文章

本文来自网易云社区 作者:汪洋 前言 新手学习可以点击参考Google的教程.开始前,我们先在本地安装好 TensorFlow机器学习框架. 首先我们在本地window下安装好python环境,约定安装3.6版本: 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6: conda切换环境:activate tensorflow: 我们安装支持CPU的TensorFlow版本(快速):…
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 ​ TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理. ​ Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端的计算过程. ​ TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. TensorFlow可被用于语音识别和图像识别等多项机器学习和深…
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是MNIST数据集,其功能都定义在mnist.py模块中. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 图 11 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1 1.2 加载 有两种方式可以获取MNIST数据集: 1) 自动下载…
1. Iris data set Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 该数据集包含了5个属性: Sepal.Length(花萼长度),单位是cm; Sepal.Width(花萼宽度)…
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一…
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 的意思. Tensorflow支持的开发语言包括c++ / python / java 等主流语言,支持的平台包括Linux,OSX,windows,移动平台等. Tensorflow基于OP(操作)的特点方便研究人员构造新的东西. Tensorflow的应用实例:腾讯优图实验室通过借助多机多卡的T…
系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html 本文概述: 目标 说明图片数字化的三要素 说明图片三要素与张量的表示关系 了解张量的存储和计算类型 应用tf.image.resize_images实现图像的像素改变 应用tf.train.start_queue_runners实现读取线程开启 应用tf.train.Coordinator实现线程协调器开启 应用tf.tra…
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python # -*- coding: UTF-8 -*- # 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # mn.SOURCE…
1.    数据挖掘与机器学习开源框架 1.1 框架概述 1.1.1 AForge.NET AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域.这个框架由一系列的类库组成.主要包括有: AForge.Imaging —— 一些日常的图像处理和过滤器 AForge.Vision —— 计算机视觉应用类库 AForge.Neuro —— 神经网络计算库AForge.Genetic -进化算法…
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_rate_dacay 学习率衰减, mini-batch size 每次迭代的样本数目 当需要调节的参数的数目较多时,我们通常使用随机参数选择进行参数调节. 比如学习率的范围为0.0001 - 1 , 在0.0001-0.001之间,样本随学习率的变化较大,因此有必要增加这部分的权重,我们使用log…