SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x,y]\) 内的每个数开方 1 x y询问区间\([x,y]\) 的每个数的和 「格式」: 有多组数据,数据以EOF结束,对于每组数据,输出数据的序号,每组数据之后输出一个空行. 「注意」: 不保证给出的区间\([x, y]\) 有x<=y ,如果x>y 请交换x ,y . 之前做过花神那个题,但…
传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全\(1\)或\(0\)的标记,有就不用理了,没有就暴力开方. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define int long long using…
题目链接:https://www.luogu.org/problemnew/show/SP2713 真暴力啊. 开方你开就是了,开上6次就都没了. #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define ll long long using namespace std; const int maxn…
题目大意 \(n\) 个数,和在\(10^{18}\)范围内. 也就是\(\sum~a_i~\leq~10^{18}\) 现在有两种操作 0 x y 把区间[x,y]内的每个数开方,下取整 1 x y 询问区间[x,y]的每个数的和 格式: 有多组数据,数据以EOF结束,对于每组数据,输出数据的序号,每组数据之后输出一个空行. 注意: 不保证给出的区间[x, y]有\(x <= y\),如果\(x>y\)请交换\(x\),\(y\). 感谢@Edgration 提供的翻译 输入输出格式 输入格…
问题描述 LG-SP2713 题解 分块,区间开根. 如果一块的最大值是 \(1\) ,那么这个块就不用开根了. 如果最大值不是 \(1\) ,直接暴力开就好了. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; #define int long long template <typename Tp> void read(Tp &x){ x=0;char ch=1;int fh; while(ch!…
题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作. 第三分钟,k说,要能查询,于是便有了求一段数的和的操作. 第四分钟,彩虹喵说,要是noip难度,于是便有了数据范围. 第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制. 第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过64位有符号整数类型的表…
GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 GSS4 - Can you answer these queries IV 题目链接:https://www.luogu.org/problemnew/show/SP2713 线段树经典题目,然而被我用分块A了. 对于区间开根号,\(1e18\)最多会被开\(6\)次就会成为\(1\),成为\(1\)后,再开根号也是\(1\),0开根号也是0,线段树(分块…
GSS4 - Can you answer these queries IV(线段树懒操作) 标签: 线段树 题目链接 Description recursion有一个正整数序列a[n].现在recursion有m次操作: (A)对于给定的x,y,使所有满足下标i在x,y之间的数a[i]开方下取整. (B)对于给定的x,y,输出满足下标i在x,y之间的数a[i]的和. 这么简单的题,recursion当然会做啦,但是为了维持她的傲娇属性,她决定考考你. Input 包含多组数据,文件以EOF结尾…
题目描述 You are given a sequence \(A\) of \(N(N \leq 100,000)\) positive integers. There sum will be less than \(10^{18}\) . On this sequence you have to apply \(M (M \leq 100,000)\) operations: (A) For given \(x\),\(y\), for each elements between the \…
传送门 Luogu 解题思路 区间开方以及区间求和. 考虑用线段树来做. 开方操作看似没有任何结合律可言,但这题有另外一个性质: 一个数的初始值不超过 \(10^{18}\) ,而这个数被开方6次左右就可以到1或0,并且1和0都是不需要再开方的. 所以我们记一下每个节点代表区间的最大值,若该值小于等于1,那么就不需要再进入下一层递归,否则就向下递归修改,修改次数最坏也不过是 \(O(6n)\) 左右,线段树完全没压力,于是这题就做完了. 细节注意事项 咕咕咕 参考代码 #include <alg…