spark实验(四)--RDD编程(1)】的更多相关文章

一.实验目的 (1)熟悉 Spark 的 RDD 基本操作及键值对操作: (2)熟悉使用 RDD 编程解决实际具体问题的方法. 二.实验平台 操作系统:centos6.4 Spark 版本:1.5.0 三.实验内容 实验一: 1.spark-shell 交互式编程 请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含 了某大学计算机系的成绩,数据格式如下所示: 首先开始我们的第一步,打开linux系统中的终端. 请根据给定的实验数据,在 spark-…
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之一,是贯穿Spark编程的始终.初期阶段,我们可以把RDD看成是Java中的集合就可以了,在后面的章节中会详细讲解RDD的内部结构和工作原理. 2.Spark-shell下实现对本地文件的单词统计 2.1思路 word count是大数据学习的经典案例,很多功能实现都可以归结为是word count…
Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合. 4. RDD支持的操作: 1)转换操作,由一个RDD生成一个新的RDD. 2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS). 5. Spark程序或者shell会话都会…
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外乎创建 RDD.转化已有 RDD 以及调用 RDD 操作进行求值.而在这一切背后,Spark 会自动将RDD 中的数据分发到集群上,并将操作并行化执行. 一.RDD基础 Spark 中的 RDD 就是一个不可变的分布式对象集合.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作进行求值. Spark 中的 RDD 就是一个不可变的分布式对象集合.每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上. object WordCount { def main(args: Array[String]) { val inputFile = "file:///home/…
1.spark-shell交互式编程 (1) 该系总共有多少学生 scala> val lines = sc.textFile("file:///usr/local/spark/sparklab/Data01.txt") lines: org.apache.spark.rdd.RDD[String] = file:///usr/local/spark/sparklab/Data01.txt MapPartitionsRDD[4] at textFile at <consol…
什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度 RDD支持两种操作:转化操作和行动操作 Spark采用惰性计算模式,RDD只有第一次在一个行动操作中用到时,才会真正计算 属性: 一组分区(Partition) 一个计算每个分区的函数 RDD之间的依…
1.今天把Spark编程第三个实验的Scala独立程序编程写完了.使用 sbt 打包 Scala 程序,然后提交到Spark运行. 2.完成了实验四的第一项 (1)该系总共有多少学生:   map(t => t.split(",")(0))表示:lines这个RDD中每个元素被split()函数拆分成3个字符串,保存到数组中,然后,把数组中的第1个元素(即学生名字字段的值)取出来放到新的RDD中. distinct()表示:去重操作,即把重复的学生名字去掉,只保留一个. coun…
今天完成了实验四的第二问和第三问 第二题 对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C.下面是输入文件和输出文件的一个样例,供参考. 输入文件 A 的样例如下: 20170101 x 20170102 y 20170103 x 20170104 y 20170105 z 20170106 z 输入文件 B 的样例如下: 20170101 y 20170102 y 20170103 x 20170104 z 20170…