洛谷P4027 [NOI2007]货币兑换】的更多相关文章

P4027 [NOI2007]货币兑换 题目描述 小 \(Y\) 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:\(A\) 纪念券(以下简称 \(A\) 券)和 \(B\) 纪念券(以下简称 \(B\) 券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数. 每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 \(K\) 天中 \(A\) 券和 \(B\) 券的价值分别为 \(A_K\) 和 \(B_K\) (元/单…
P4027 [NOI2007]货币兑换 算法:dp+斜率优化 题面十分冗长,题意大概是有一种金券每天价值会有变化,你可以在某些时间点买入或卖出所有的金券,问最大收益 根据题意,很容易列出朴素的状态转移方程: 设\(f_i\)为第\(i\)天B券的数量,\(ans_j\)为以当前价格卖光第\(j\)天的金券可获得的收益,则 \(f_i=\max{ans_j}/(a_i*r_i+b_i)\) \(O(n)\)求\(\max{ans_j}\),复杂度为\(O(n^2)\) #include<iostr…
题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{j=1}^{i-1}a[i]*(dp[j]/(a[j]*r[j]+b[j])*r[j])+b[i]*dp[j]/(a[j]*r[j]+b[j]),dp[i-1]\}\) 我们稍微观察一下,里面那个式子似乎能写成斜率优化的样子: 令 \(t[j]=dp[j]/(a[j]*r[j]+b[j])\),假设…
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = max(f_{i - 1}, A_i \frac{f_j R_j}{A_j R_j + B_j} + B_i \frac{f_j}{A_j R_j + B_j})\) 变形一下: \[\frac{f_i}{B_i} - \frac{f_j}{A_j R_j + B_j} = \frac{A_i}{B…
P4027 [NOI2007]货币兑换 显然,如果某一天要买券,一定是把钱全部花掉.否则不是最优(攒着干啥) 我们设$f[j]$为第$j$天时用户手上最多有多少钱 设$w$为花完钱买到的$B$券数 $f[j]=R_{j}*w*A_{j}+w*B_{j}$ $w=f[j]/(R_{j}*A_{j}+B_{j})$ 在第$i$天的转移方程: $f[i]=R_{j}*w*A_{i}+w*B_{i}$ $w*B_{i}=-R_{j}*w*A_{i}+f[i]$ $w=-A_{i}/B_{i}*R_{j}…
P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\(n\)个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个\(n\)个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值\(c\),\(c\)越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人\(s\)和\…
P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果当前枚举的$k$可以更新$i$到$j$的最短路,那么就更新最短路,同时$i$到$j$的最短路条数更新为$p[i][k]*p[k][j]$根据乘法原理,$p[i][j]$表示$i$到$j$的最短路条数 最后统计一下就可以了,也是$N^3$暴力枚举 注意:要开$long$$long$ #include<…
题目传送门 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利…
传送门 首先有一个显然的贪心,每次操作都要做到底,为了最优不会出现只卖一部分或者只买一部分的操作 所以设 $f[i]$ 表示前 $i$ 天得到的最大价值,那么对于每一个 $i$,枚举所有 $j<i$,意思就是第 $j$ 天全部买入,第 $i$ 天全部卖出 显然如果知道 $f[j]$,那么就知道第 $j$  天买入多少 设 $A$ 买了 $X$, $B$ 买了 $Y$,那么 $f[i]=a[i]*X+b[i]*Y$ 因为 $X,Y$ 只和 $j$ 有关,显然可以斜率优化 具体就是 $-a[i]*X…
Description: 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即…