MapReduce计算原理及步骤】的更多相关文章

步骤:input从HDFS读取内容, split()切割分片内容,key/value, map()方法对输入的key/value进行计算处理,先写到内存,在内存中进行分区.排序,之后将Key/value写入磁盘对应分区 combiner方法(本地计算,不是所有都适用,目的是减少网络传输) shuffiling 从执行map task之后 到执行 redurce task 之前的过程 总称为 shuffiling reduce 会从经过map程序计算后落在各个分区里取数据去merge进行计算…
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个例子,也算是对自己写的程序的总结了. 首先解释下环比,例如我们要算本周的环比,那么计算方式就是本周的数据和上周数字的差值除以上周数值就是环比了,如果是月的环比就是本月和上月数据的差值除以上月数字就是本月环比了.不过本mapreduce实例不会直接算出比值,只是简单求出不同时间段数值的差值,最终环比结…
MapReduce概述 MapReduce是一种分布式计算模型,运行时不会在一台机器上运行.hadoop是分布式的,它是运行在很多的TaskTracker之上的. 在我们的TaskTracker上面跑的是Map或者是Reduce Task任务. 通常我们在部署hadoop taskTracker 的时候,我们的TaskTracker同时还是我们的Datanode节点.datanode和tasktracker总是部署在一起的. MapReduce执行流程: 为什么要有多个datanode: 因为我…
批处理引擎MapReduce内部原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce作业生命周期 MapReduce作业作为一种分布式应用程序,可直接运行在Hadoop资源管理系统YARN之上(MapReduce On YARN).如下图所示,每个MapReduce应用程序由一个MRAppMaster以及一系列MapTask和ReduceTask构成,它们通过ResourceManager获得资源,并由NodeManager启动运行. 当用户向YARN中…
文章概览: 1.MapReduce简介 2.MapReduce有哪些角色?各自的作用是什么? 3.MapReduce程序执行流程 4.MapReduce工作原理 5.MapReduce中Shuffle过程 6.MapReduce编程主要组件 7.针对MapReduce的缺点,YARN解决了什么? MapReduce简介 MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理.实现下面目标 ★ 易于编程 ★ 良好的扩展性 ★ 高容错性   MapReduce有…
第一部分:MapReduce工作原理 MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•TaskTracker:保持JobTracker通信,在分配的数据片段上执行MapReduce任务.提交作业•在作业提交之前,需要对作业进行配置•程序代码,主要是自己书写的MapReduce程序.•输入输出路径•其他配置,如输出压缩等.•配置完成后,通过JobClinet来提交作业的初始化•客户端提交完成后,…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
第一部分:MapReduce工作原理   MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•TaskTracker:通过心跳heartbeat保持JobTracker通信,在分配的数据片段上执行MapReduce任务.提交作业•在作业提交之前,需要对作业进行配置•程序代码,主要是自己书写的MapReduce程序.•输入输出路径•其他配置,如输出压缩等.•配置完成后,通过JobClinet来提交作…
MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在Hadoop集群里里面的任意一个节点进行,只要该节点装了Hadoop并且连入了Hadoop集群) 2.job client 在收到这个请求以后呢,会找到JobTracker并且请求一个作业ID(Job ID).(根据我们的核心配置文件,可以很轻易的找到JobTracker) 3.通过HDFS 系统把…
转载自http://www.aboutyun.com/thread-6723-1-1.html 有时候我们在用,但是却不知道为什么.就像苹果砸到我们头上,这或许已经是很自然的事情了,但是牛顿却发现了地球的万有引力.ok了,希望通过了解MapReduce,我们能够写出更好的MapReduce例子.第一部分:MapReduce工作原理<ignore_js_op> <ignore_js_op> MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业…