题意: N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价. n<=100 思路: dp[i][j]表示以i开头,长度为j的石子合并的答案 dp[i][j] = min(dp[i][k] + dp[i+k][j-k], dp[i][j] + sum(i,i+j-1)); 代码: #include<iostream> #include<cstdio> #inclu…
1021 石子归并  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  取消关注 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 => 1 5 4(5) => 1 9(14)…
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021 经典区间dp,dp[i][j] 表示将从 i 到 j 堆石子合并最小代价,长度为 j-i+1,可看做之前已经合并的 i 到 k 和 k 到 j 两堆石子合并,代价是 i 到 j 的石子数量: #include<iostream> #include<cstring> #include<algorithm> using namesp…
51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最后dp[1][n]即为所求结果. #include<cstdio> #include<algorithm> #include<cstring> #define CLR(a,b) memset((a),(b),sizeof((a))) using namespace std;…
1021 石子归并  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   例如: 1 2 3 4,有不少合并方法 1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19) 1 2 3 4 => 1 5 4(5) => 1 9(14) =…
题意:有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 解题关键:区间dp,首先枚举区间,再枚举分割点,区间由小到大更新. 转移方程:$dp[l][r] = \min (dp[l][r],dp[l][i + 1] + dp[i + 1][r] + w[i][j])$ 复杂度:$O({n^3})$ 注意$dp[i][i] = 0$ 转载的比较好的一段理…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 N堆石子摆成一个环.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价.计算将N堆石子合并成一堆的最小代价.   例如: 1 2 3 4,有不少合并方法 1 2 3…
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不了的,需要优化 注意:dp的转移如下:dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum(i,j)),其中sum(i,j)表示i到j的价值和,满足区间单调性 因此dp[i][j]也满足区间单调性,可以用四边形不等式优化 我们令s[i][j]等于让dp[i][j]取最小值的那个K…
区间dp 递推比递归的常数要小  所以还是尽量学会递推吧 看题解  各种恶心啊  有木有 还是视频讲的直接呃   不过就是讲的有点儿慢 链接:https://www.bilibili.com/video/av12159085/ #include<bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f; ][],s[],sum[]; int main() { int n; scanf("%d",&n…
题目: 思路:动态规划,递推式子 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]);     dp[i][j]表示合并第i到第j个石子需要的最少代价.sum[i]表示前i个石子的价值,sum[j] - sum[i-1]即合成两堆石子((第i到第k合并出的石子),(第k+1到第j合并出的石子)). 但是考虑要求1-4, 需要先求出(1-1,2-4),(1-2,3-4),(1-3,4-4). 所以我们不能直接按横纵…