1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1927 Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值.大赛要…
传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量为\(1\),费用为\(a[i]\)的边,出点向汇点连流量为\(1\),费用为\(0\)的边.然后对于每条边,由\(x\)的入点向\(y\)的出点连流量为\(1\),费用为路径长度的边.跑一遍费用流. 代码 #include<iostream> #include<cstdio> #in…
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1576  Solved: 954[Submit][Status][Discuss] Description 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值.大赛要求车手们从一…
拆点,费用流... ----------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue>   #define rep( i, n ) for( int i = 0; i < n;…
1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移动等价于走到t再从s重新开始 搜了下题解发现全是普通费用流... 源向i+n连容量1,费用为能力爆发的费用 源向i连容量1,费用为0 i+n向汇连容量1,费用0 如果有边x<y,连x到y+n容量为1,费用为时间 和最小路径覆盖很像,只是连到i+n有权值 *** #include <iostream…
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2051  Solved: 1263[Submit][Status][Discuss] Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一.赛车大赛的赛场由N颗行星和M条双向星际航路构成,其中每颗行星都有一个不同的引力值.大赛要求车手们从一颗与这N颗行…
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的 梦想,来自杰森座α星的悠悠也是其中之一.赛车大赛的赛场由N颗行星和M条双向星际航路构成,其中每颗行星都 有一个不同的引力值.大赛要求车手们从一颗与这N颗行星之间没有任何航路的天体出发,访问这N颗行星每颗恰好 一次,首先完成这一目标的人获得胜利.由于赛制非…
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS->TT的最大流 该走的i->i'是不会不走的 */ #include<queue> #include<cstdio> #include<cctype> #include<cstring> #include<algorithm> #def…
传送门 发现它的本质是求一个费用最小的路径覆盖 最小路径覆盖是网络流23题中的一个比较典型的模型 所以考虑相似的建边 因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\(A_i,B_i\)两个点,\(S->B_i , A_i -> T\),原图中的边\((i,j)\)变为\(B_i -> A_j\),费用不变. 接下来我们需要考虑费用的设置 首先\(S->B_i\)的边的费用显然是通过空间跳跃到达这个点需要的时间\(a_i\). 但有一个问题:在上面以…
果然还是不会建图- 设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量. 因为每个点只能经过一次,所以流量限制为1,注意到从s开始很难保证出发点不同,所以但是又有联通条件,所以考虑每个扩展过的点(实际不用考虑反正早晚要扩展到)只向外扩展一个点,也就是每次只选两个联通的点(包括瞬移可达) 拆点的作用是加上费用,\( s \)到所有\( i \)连流量1费用0的边,所有\(i \)向t连流量1…