理解SIFT】的更多相关文章

理解SIFT.tab{font-size:12px; margin-bottom: 10px;}.tab a{cursor:pointer;cursor:pointer;display:inline-block;margin-right:10px;color:#000}#tab-html{color:#ccc}.content-container .content-html{visibility: hidden;}.content-container.html .content-markdown…
SIFT特征原理与理解 SIFT(Scale-invariant feature transform)尺度不变特征变换 SIFT是一种用来侦测和描述影像中局部性特征的算法,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量. SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位. SIFT算法的特点 SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变…
已经有很多博客已经将sift特征提取算法解释的很清楚了,我只是记录一些我不明白的地方,并且记录几个理解sift特征比较好的博客. 1. http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/ 2. http://blog.csdn.net/abcjennifer/article/details/7639681/ 3.http://blog.csdn.net/xiaowei_cqu/artic…
原文地址:https://blog.csdn.net/silence2015/article/details/77374910 本文概述 图像检索是图像研究领域中一个重要的话题,广泛应用于医学,电子商务,搜索,皮革等.本文主要是探讨学习基于局部特征和词袋模型的图像检索设计. 图像检索概述 图像检索按照描述图像不同方式可以分为两类,一类是基于文本的图像检索(Text Based Image Retrieval),另一类是基于内容的图像检索(Content Based Image Retrieval…
特征检测 特征描述 特征匹配 特征跟踪 “不读白不读,读了还想读” 的一本基础书 低层次特征提取 阈值方法 1. 边缘检测 一阶检测算子 二阶检测算子 相位一致性(频域) 2. 角点检测(局部特征提取) 3. 光流(optical flow) 一阶边缘检测算子 基础算子:Roberts交叉算子 Prewitt算子 Sobel算子 Canny算子 (most popular recently) 既然号称“最优算子”,那就作为典型,深入一下. Canny 的目标是找到一个最优的边缘检测算法,最优边缘…
1.提取 特征点 .特征描述子 与 提取特征向量 之间的区别: (1).特征点:指的是一张图片上比较有代表性的‘位置’,提取特征点就是把图片中这些有代表性的位置给标出来. (2).特征描述子:当提取出特征点之后,由于特征点是图片的某个位置,为了能够进行数学计算,我们需要给这些“位置”用一个数学方法来描述,于是可以用一个向量v来表示每一个位置.而这个向量就叫做 特征描述子. (3).特征向量:指的是通过对图片在像素层面上做一些变换(LBP.颜色特征.Sift.surf)之后,生成一个向量V,用这个…
之前结合不同人的资料理解了sift的原理,这里通过opencv中的代码来加深对sift的实现的理解. 使得能够从原理性理解到源码级的理解.不过该博文还是大量基于<赵春江, opencv2.4.9 源码分析,SIFT http://blog.csdn.net/zhaocj>的. 在opencv3.0中,已经看不到sift.cpp源代码了,在2.4.10中还是有的:opencv\sources\modules\nonfree\src下面.可以看出这是一个非免费代码.使用需要付费的,毕竟sift是哥…
SIFT特征-尺度不变特征理解 简介 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子.该方法于1999年由David Lowe首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International j…
先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints) { , actualNOctaves = , actualNL…
1.SIFT概述 SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的.SIFT特征对旋转.尺度缩放.亮度变化等保持不变性,是一种非常稳定的局部特征. 1.1 SIFT算法具的特点 图像的局部特征,对旋转.尺度缩放.亮度变化保持不变,对视角变化.仿射变换.噪声也保持一定程度的稳定性. 独特性好,信息量丰富,适用于海量特征库进行快速.准确的匹配. 多量性,即使是很少几个物体也可以产生大量的SIFT特征 高速…
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近又发现了一个好同学的博客,很详细的讲了SIFT 想要得知图像中哪些是有意义的,必须先要明确这样一个问题:在一幅图像中,只有在一定的尺度范围内,一个物体才有意义.举一个例子,树枝这个概念,只有在几厘米到几米的距离去观察它,才能感知到它的确是树枝:如果在微米级或者千米级去观察,就不能感知到树枝这个概念了…
Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔  (  Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2. 图像金字塔 高斯金字塔 采样金字塔1 1.3. 尺度空间的目的是『见森林又能见树木』,墨迹一点的解释就是,在低尺度下可以看清楚很多细节,在高尺度下可以看到轮廓 2 1.4. 在一幅图像中,要想描述真实世界的结构与信息,多尺度描述至关重要.2 1.5. 图像金字塔这种结构在图像处理中有广泛的用途.…
SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J],IJCV,2004' 笔记 关键点是指图像中或者视觉领域中明显区别于其周围区域的地方,这些关键点对于光照,视角相对鲁棒,所以对图像关键点提取特征的好坏直接影响后续分类.识别的精度. 特征描述子就是对关键点提取特征的过程,应该具备可重复性.可区分性.准确性.有效性和鲁棒性. SIFT(Scale-I…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
原文链接:http://www.cnblogs.com/cfantaisie/archive/2011/06/14/2080917.html   主要步骤 1).尺度空间的生成: 2).检测尺度空间极值点: 3).精确定位极值点: 4).为每个关键点指定方向参数: 5).关键点描述子的生成. L(x,y,σ), σ= 1.6 a good tradeoff     D(x,y,σ), σ= 1.6 a good tradeoff 关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的.在 …
转自 http://blog.csdn.net/stellar0/article/details/8741780 分类: 最近也注意一些图像拼接方面的文章,很多很多,尤其是全景图拼接的,实际上类似佳能相机附加的软件,好多具备全景图拼接,多幅图像自动软件实现拼接,构成(合成)一幅全景图像(风景). Sift算法,我略知一二,无法仔细描述(刚也贴了2个最近的资料).       当就尺度空间(scale space),我想,其在计算机视觉(Computer Vision)\图像的多分辨率分析(尤其近…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…
网上去找关于HOG的资料,发现理解性的较少,并且较为冗长,为方便大家理解便自己写了篇,希望能对奋斗在特征提取第一线的同志们有所帮助: HOG即histogram of oriented gradient, 是用于目标检測的特征描写叙述子,该技术将图像局部出现的方向梯度次数进行计数,该方法和边缘方向直方图.scale-invariant feature transform类似,不同的是hog的计算基于一致空间的密度矩阵来提高准确率.Navneet Dalal and Bill Triggs首先在0…
理解sparse coding 稀疏编码系列: (一)----Spatial Pyramid 小结 (二)----图像的稀疏表示——ScSPM和LLC的总结 (三)----理解sparse coding (四)----稀疏模型与结构性稀疏模型 --------------------------------------------------------------------------- 本文的内容主要来自余凯老师在CVPR2012上给的Tutorial.前面在总结ScSPM和LLC的时候,…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.高斯尺度空间(GSS - Gauss Scale Space) 2.高斯差分(DOG - Difference of Gauss) 2.1 生产DoG 2.2 为什么用DoG来检测特征点 3.GSS尺度选择 3.1 GSS中尺度值的产生 3.2 高斯核性质及其在SIFT中的应用 1 GSS(Gauss Scale-space) It has b…
原地址:http://www.cnblogs.com/freedomshe/archive/2012/04/24/2468747.html 题记:2012年4月1日回到家,南大计算机研究僧复试以后,等待着的就是独坐家中无聊的潇洒.不知哪日,无意中和未来的同学潘潘聊到了图像处理,聊到了她的论文<基于LDA的行人检测>,出于有一年半工作经验的IT男人的本能,就一起开始学习研究这篇“论文”了.众所周知,老师给学生设置论文题目的,起初都是很模糊的——自己没有思考清楚实践上的可行性和具体思路,仅从理论了…
原文:http://blog.csdn.net/mysniper11/article/details/8726649 引文地址:http://www.cnblogs.com/lxy2017/p/3927456.html 视频介绍网址:http://www.cvchina.info/2011/04/05/tracking-learning-detection/ TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期…
SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别.图像配准领域具有广泛的应用,下面按照SIFT特征的算法流程对其进行简要介绍对SIFT特征做简要介绍. 高斯金字塔是SIFT特征提取的第一步,之后特征空间中极值点的确定,都是基于高斯金字塔,因此SIFT特征学习的第一步是如何建立的高斯金字塔. 明白几个定义: 高斯金字塔 对于高斯金字塔,很容易直观地理解为对同一尺寸的图像,然后进行不同程度的高斯平滑,这些图像构成高斯金字塔,这种是不对的,这描…
 SIFT算法原理+参看资料+问题issue 参考书籍——<图像局部不变性特征与描述>王永明.王贵锦著 SIFT特征点提取——详见博客:https://blog.csdn.net/lingyunxianhe/article/details/79063547 SIFT算法总结:用于图像搜索——详见博客:https://www.cnblogs.com/wishchin/p/9200312.html 问题描述及解决 1.什么叫“为了满足尺度变化的连续性”S=3? 理解:假设s=3,也就是每个塔里有3…
上一节中,我们介绍了Harris角点检测.角点在图像旋转的情况下也可以检测到,但是如果减小(或者增加)图像的大小,可能会丢失图像的某些部分,甚至导致检测到的角点发生改变.这样的损失现象需要一种与图像比例无关的角点检测方法来解决.尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)可以解决这个问题.我们使用一个变换来进行特征变换,并且该变换会对不同的图像尺度输出相同的结果. 到底什么是SIFT算法?通俗一点说,SIFT算法利用DoG(差分高斯)来提取关键…
 备注:源代码还未理解,所以未附上——下周任务 一.SIFT算法 1.算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法.它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结.局部影像特征的描述与侦测可以帮助辨识物体,SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.对于光线.噪声.些…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com or (zddhub@gmail.com) 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 如果你学习SIFI得目的是为了做检索,也许OpenSSE更适合你,欢迎使用. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种…
新手上路,先转载学习tornadomeet的博客:http://www.cnblogs.com/tornadomeet/archive/2012/08/16/2643168.html 特征点检测学习_1(sift算法) sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记.本文比较早的一篇博文opencv源码解析之(3):特征点检查前言1 中有使用opencv自带的sift做了个简单的实验,而这次主要是利用Ro…