题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnblogs.com/Blog-of-Eden/p/9367521.html对我帮助很大 思维很巧妙的一道题,佩服出题人Orzzz 由原式可得,$c=\frac{ab}{a+b}$ 令g=gcd(a,b),A=a/g,B=b/g,显然gcd(g,c)==1,gcd(A,B)==1 带入可得$\frac{ABg…
LOJ 6482 设$d = gcd(a, b)$,$xd = a$,$yd = b$,因为$\frac{1}{a} + \frac{1}{b} = \frac{a + b}{ab} = \frac{1}{c}$,所以$c(x + y)= xyd$. 因为$d$不整除于$c$,那么$d | (x + y)$,把$d$除过去, $$\frac{x + y}{d} = \frac{xy}{c}$$ 设这个式子等于$p$,如果$p$不为$1$,那么$p | x$或者$p | y$,$p$不可能同时整除…
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首先就把区间缩小一下 这样变成了\(gcd=1\) 设\(f(i)\)表示\(gcd\)恰好为\(i\)的方案数 那么,要求的是\(f(1)\) 设\(g(x)=\sum_{d|x}f(d)\) 所以\(g(x)\)表示\(x|gcd\)的方案数 这个不是很好求吗? 所以一波莫比乌斯反演 \[f(1)…
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如两双袜子为一双就采用二进制,平常的一周七天就采用七进制,每小时有六十分钟就采用六十进制.在计算机科学中我们经常用的有二进制,八进制,十进制,十六进制.计算机只能识别0和1组成的数字,但由于当一个数字比较大的时候,二进制的长度将变得非常长,对于人来说可读性非常差,而进制越大,那么数据显示的长度便越短,…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/problem/P4607 题解 首先观察一些性质. 一个回文串可以轮换产生多少个本质不同的串?周期那么多个. 可是有一种特殊情况,就是对于长度为偶数的回文串\(a=ss^Rss^Rss^R...ss^R\) (\(s^R\)表示\(s\)的reverse), 如果轮换位数恰好等于周期的一半,那么会产生\(…
就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 首先我们学过莫比乌斯反演的一般能够想到枚举gcd,记为w 所以我们需要求的就是$\sum\limits_{w|n}w\sum\limits_{w|i}[gcd(i,n)=w]$ 然后……就到了激动人心的构造函数环节…… 设$F(w)=\sum\limits_{w|i}[w|gcd(i,n)]$ $f…
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的 N 个整数都求一次最大公约数,以便进一步研究. 然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小 z 会告诉你一个整数 K, 你需要回答他最大公约数刚好为 K 的选取方案有多少个. 由于方案数较大,你只需要输出其除以 10^9+7 …
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. O…
[题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solution-p3172 1.推式子里面最重要的一个套路:枚举\(di,\)忽略倍数系数的影响.在这道题里面应用于只考虑k的倍数才是有用的. 2.考虑容斥做法,即\(f[i]\)表示答案是\(i\)的倍数的方案数. 3.为避免讨论边界情况,不考虑全选同一个数的情况,即设\(f[i]=x^{n}-x,\)最后再…
双亲数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 959  Solved: 455[Submit][Status][Discuss] Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数. 与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_< 比如,(4, 6…
题目链接 给你们讲个笑话:Konoset是个sb,他快速幂的时候把幂次取模了. 原式差不多就是这样吧$\prod\limits_{i=1}^{n}\prod\limits_{j=1}^{m}f[gcd(i,j)]$ 然后我们枚举gcd(i,j) 可以变换一下 $\prod\limits_{w=1}^{min(n,m)}f[w]^{\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==w]}$ 然后上面那个玩意搞搞可以反演一下 变为$\prod\…
题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\sigma_0(n)\)表示\(n\)的约数个数 第一个公式是莫比乌斯函数的基本性质,至于第二个公式的证明,可以考虑\(i*j\)中每一个质因子对 \(\sigma_0(i*j)\) 的贡献,对于一个质因子 \(p\) ,若它在 \(i\) 中的次数为 \(k_1\) ,它在 \(j\) 中的次数为…
求$\sum_{i = 1}^{n} \sum_{j = 1}^{i} [lcm(i, j) \le n]$因为这样不好求,我们改成求$\sum_{i = 1}^{n} \sum_{j = 1}^{n} [lcm(i, j) \le n]$.这样求出来的值把除了(i, i)这样的点对以外所有点对都重复统计了一次.因此$ans = \frac{rnt + n}{2}$(先加上没有重复统计的点对个数,使得所有点对都重复统计了一次,然后再除2就是不重复统计的点对个数)接下来就是化式子了...$$\su…
题意:给定一个序列,a[n]=3n(n-1)+1,n>=1,求给定的m(m<=1e9)最少可以用几个a里面的数表示(可以重复) 思路:对答案分类 (1)假定答案为1,则m必定是a中的某一个数,直接查找即可,复杂度O(logn) (2)假定答案为2,则m必定可以拆分成两个a中的数之和,用两指针分别从头和尾向中间扫,判断是否可以构成m,复杂度O(n) (3)假定答案大于等于3,设答案为k,即k>=3,则必有m=a[i1]+a[i2]+...+a[ik],由于a[i]=3i(i-1)+1=6[…
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Luogu)https://www.luogu.org/problemnew/show/P3172 (BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=3930 题目大意: 给定N,M,L,R,从区间[L,R]内选出N个整数使得它们的gcd恰好为m…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
http://poj.org/problem?id=3904   题意:给一些数,求在这些数中找出四个数互质的方案数.   莫比乌斯反演的式子有两种形式http://blog.csdn.net/outer_form/article/details/50588307 这里用的是第二种形式. 求出四个数的公约数为x的倍数的方案数,即可得到,四个数的公约数为x的方案数. 这里x为1. 代码 #include<cstdio> #include<cstring> #include<io…
题目 P4844 LJJ爱数数 本想找到莫比乌斯反演水题练练,结果直接用了两个多小时才做完 做法 \(\sum\limits_{a=1}^n\sum\limits_{b=1}^n\sum\limits_{c=1}^n[gcd(a,b,c)=1\&\&\frac{a}{1}+\frac{b}{1}=\frac{c}{1}]\) \([gcd(a,b,c)=1]\)这个好理解,但后面\(\frac{a}{1}+\frac{b}{1}=\frac{c}{1}\)怎么办呢? 下意识去掉分数:\((…
思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B)c,故g|(A+B), 设(A+B)/g=AB/c= k ∈ Z, 若k>1,因为A,B互质,所以k|A或k|B,则A+B不能被k整除,矛盾.因此k=1. 故充要条件为:1<=a,b,c<=n,a+b=g^2,c=ab/g^2. 枚举g,则可得A+B=g.用莫比乌斯反演求出一定范围内与g互…
「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \(g = \text{gcd(a, b)}\) ,那么相当于是要求: \[ \sum_{g=1}^{\sqrt{2n}}\sum_{i}[\text{gcd}(g^2-ig, ig)=g] \] 化简一波: \[ \sum_{g=1}^{\sqrt{2n}}\sum_{i}[\text{gcd}(g-…
LJJ爱数数 求\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\epsilon(gcd(i,j,k))(\frac{1}{i}+\frac{1}{j}==\frac{1}{k}),n\leq 10^{12}\) 解 显然无法用Mobius反演,问题在于\(\frac{1}{i}+\frac{1}{j}==\frac{1}{k}\),要将其转换为gcd条件. 法一:先约数拆分,再证明对应相等 分数我们无法处理,所以有 \[(i+j)k=ij\] 设\(g=gcd(i,…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/50966171 求从区间[L,H]中可重复的选出n个数使其gcd=k的方案数 就是,莫比乌斯反演,我抄的代码所以没有提前求莫比乌斯函数. 自乘的倍数个方案要去掉.现在想想我最后自己想出来的代码好像是没问题的但是我忘了加上唯一的一个自乘特判情况了,wa了太多次最后没忍住读(抄)了一份ac代码,还是意志…
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出 输出一个整数,为…
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. \[N,K,L,H \leq 10^9,H-L \leq 10^5\] 分析 \(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了…
http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写的(虽然我没写出来) #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; ; l…
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Luogu)https://www.luogu.org/problem/show?pid=3455 (BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题目大意: 有t次询问(\(t\le5e4\)), 每次给定a,b,d, 询问有多少对…
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注:本题解大部分摘自Imagine大佬提供在洛谷的题解 我们设$f(x)$表示最小循环节长度为x的合法序列数,那么有$ans=\sum_{d|gcd(n,m)}\frac{1}{d}f(d)$ 这是因为最小循环节为d的序列对应的环会被计算d次,比如 0101,最小循环节长度为 2(循环节为 01),其对…
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的没的的前置 导数 \(f'(x)=\lim\limits_{\triangle x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\) \(\sin x:\cos x\) \(\cos x:-\sin x\) \(\ln x:\frac{…
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ…