2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代码如下: #include<cstdio> #include<algorithm> #include<iostream> using namespace std; #define int long long int x,y; inline int read(){ int s…
Web Maximize Compression with Zopfli Browser Detection with JavaScript Simple MySQL Master HA with mysqlnd_ms 8 ways to improve ASP.NET Web API performance Mobile Asynchronous Message Passing With Actors in Objective-C Swift from an Objective-C devel…
Mobile How to implement Android Splash Screen Migrating iOS MVC Applications to Windows Phone 8 (M-V-VM architecture) Nokia Imaging SDK – Now Available iOS Quick Tip: 5 Tips to Increase App Performance .NET C# Performance Benchmark Mistakes, Part Thr…
Mobile Resources for Mac and iOS Developers- Introduction to Objective-C Modules Other 10 Principles of Good Mobile Library Design Build Hadoop Eclipse Plug-in Jar From Source Code And Install That Plug-in In Eclipse IDE Mobile Web Problems and How t…
传送门 又一道点分治. 直接维护子树内到根的所有路径长度,然后排序+双指针统计答案. 代码如下: #include<bits/stdc++.h> #define N 40005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^4…
传送门 题意:给你x个a,y个b,z个c,显然这些字符可以拼成若干字符串,然后求这些字符串中最小表示法表示出来的最大的那一个. 解法:贪心思想,用multiset维护现在拼成的字串,每次取一个最小的和一个最大的拼在一起,最后剩下的就是答案. 代码如下: #include<bits/stdc++.h> using namespace std; int a,b,c; multiset<string>s; int main(){ scanf("%d%d%d",&…
在redis2.8版本中有一个tcp-backlog配置, 说明如下: # TCP listen() backlog.## In high requests-per-second environments you need an high backlog in order# to avoid slow clients connections issues. Note that the Linux kernel# will silently truncate it to the value of…
redis tcp-backlog配置 在redis2.8版本中有一个tcp-backlog配置, 说明如下: # TCP listen() backlog.## In high requests-per-second environments you need an high backlog in order# to avoid slow clients connections issues. Note that the Linux kernel# will silently trunca…
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, 5C3 = 10. In general, It is not until n = 23, that a value exceeds one-million: 23C10 = 114406…