[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的价值. 一个数字只能参与一次配对,可以不参与配对. 在获得的价值总和不小于 0 的前提下,求最多进行多少次配对. Input 第一行一个整数 n. 第二行 n 个整数 a1.a2.…….an. 第三行 n 个整数 b1.b2.…
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的价值. 一个数字只能参与一次配对,可以不参与配对. 在获得的价值总和不小于 0 的前提下,求最多进行多少次配对. 显然可以配对的两点之间可以连费用为\(c_i \times c_j\)的边 一开始想拆开节点限制流量,但这样没法求配对次数啊 应该深入分…
BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\)也向\(i'\)连边,如果上一次走了\(i->j'\),那么这一次一定走\(j->i'\). 每次跑最大费用流,直至有一次费用变成负,然后加上当前正权值能抵消它的流量,最后总流量除以2就可以了. \(Another Solution\) 两个数能匹配首先要能整除,其次它们所有质因子的次数和一定只…
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 因此筛完素数.分解质因子,记录质因子的个数 奇数个分为一类,偶数个分为一类,那么连边一定是奇数向偶数才可以连,而其中能整除的且商为质数的连边 然后源点向奇数的点连边,偶数的点向汇点连边,跑费用流 至于下界,我们先把权值取负 由于是求最小费用,那么当求得费用刚好大于0时 上一次刚好小于零的费用流就是最终的流…
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b->a也连接上 最后除2 整除和贪心可只知道它是对的 代码 #include <bits/stdc++.h> #define ll long long #define iter vector<int>::iterator using namespace std; const ll…
利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; ; const int P=N; ; const int Inf=0x3f3f3f3f; const LL oo=0xafafafafafafafafLL; struct…
重点是如何找到可以配对的\(a[i]\)和\(a[j]\). 把\(a[i]\)分解质因数.设\(a[i]\)分解出的质因数的数量为\(cnt[i]\). 设\(a[i]\geq a[j]\) 那么\(a[i]\)可以和\(a[j]\)配对需要满足\(a[i]\)%\(a[j]==0\)&&\(cnt[i]==cnt[j]+1\) 证明显然. 然后我们按\(cnt[i]\)的奇偶分成两部分,然后如果\(a[i]\)和\(a[j]\)可以配对(假设a[i]在左边)从\(i\)向\(j\)连一…
数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的价值. 一个数字只能参与一次配对,可以不参与配对. 在获得的价值总和不小于 0 的前提下,求最多进行多少次配对. Input 第一行一…
今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后来罗爷爷提醒我这样子会wa,因为你无法保证所有点都没有超过B[I]次,too naive 正解是还要考虑到奇数/偶数个质数的数字,把它们变成可二分图,看出这个性质就OK了... 至于要保证费用下界的问题,这个..我也不知道为什么我原来的方法不行 后来照着标程改的,加了一行memset就过了,一脸懵逼…
题面 传送门 思路 一个数字能且只能匹配一次 这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组) 上限?价值?网络流! 把一次匹配设为一点流量,那产生的价值不就是费用了吗? 我们考虑把一种数字抽象成一个点,可以匹配的数字之间连边,费用为c[i]*c[j],流量上限为..... 等等,流量上限怎么设? 而且还有一个问题:这里的匹配是双向的,虽然可以$O\left(n^2\right)$求出所有匹配对,但是网络流要求是单向边啊! 别急,我们先来分析一…