Spark MLlib LDA 源代码解析】的更多相关文章

1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且还涉及到了Spark GraphX图计算方面的知识.要想明确当中的原理得要下一番功夫. LDA源代码解析前的基础知识: 1)LDA主题模型的理论知识 參照:LDA数学八卦 2)SparkGraphX 基础知识 http://blog.csdn.net/sunbow0/article/details/…
LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有非常多.眼下广泛使用.可以分布式并行处理大规模语料库的有微软的LightLDA,谷歌plda.plda+,sparkLDA等等. 以下介绍这3种LDA: LightLDA依赖于微软自己实现的multiverso參数server.server底层使用mpi或zeromq发送消息. LDA模型(word…
github https://github.com/cclient/spark-lda-example spark mllib lda example 官方示例较为精简 在官方lda示例的基础上,给合中文的场景作了些适配 demo性质的东西,只保证可以执行 性能,扩展,优化后续再实施 resources/docs/ 下为doc分词样例 测试 idea下执行test/LdaCustom 或 test/LdaOrignal test/LdaCustom 初期不了解spark lda,官方样例输入为数…
舆情系统每日热词用到了lda主题聚类 原先的版本是python项目,分词应用Jieba,LDA应用Gensim 项目工作良好 有以下几点问题 1 舆情产品基于elasticsearch大数据,es内应用lucene分词,python的jieba分词和lucene分词结果并不一致(或需额外的工作保持一致),早期需求只是展示每日热词,分词不一致并不是个问题,现在的新的需求,要求lda和数据无缝结合,es集成jieba,再把es内的数据全用全量数据重新分词,考虑工作量和技术难度上都不现实,只好改lda…
1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning);这类分析中训练数据集中给出的数据类标是确定的.机器学习的目标是,对于给定的一个训练数据集,通过不断的分析和学习产生一个联系属性集合和类标集合的分类函数(Classification Function)或预測函数(Prediction Function),这个函数称为分类模型(Clas…
Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并终于完毕计算.具体阐述能够阅读<Spark:大数据的电花火石!>. 那么Standalone模式下,Client.Master和Worker是怎样进行通信,注冊并开启服务的呢? 1. node之间的RP…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性),使用聚类算法将数据集划分为k个子集,并且要求每个子集内部的元素之间的差异度尽可能低,而不同子集元素的差异度尽可能高.简而言之,就是通过聚类算法处理给定的数据集,将具有相同或类似的属性(特征)的数据划分为一组,并且不同组之间的属性相差会比较大. K-Means算法是聚类算法中应用比较广泛的一种聚类算法…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) .源代码 .源代码解析 .实例 第二章Deep Belie…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 基础及源代码解析 2.1 Deep Belief Network深度信念网络基础知识 )综合基础知识參照: http://tieba.baidu.com/p/2895759455   http://wenku.baidu.com/link?url=E8…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
从CSDN中读取到关于spark structured streaming源代码分析不错的几篇文章 spark源码分析--事件总线LiveListenerBus spark事件总线的核心是LiveListenerBus,其内部维护了多个AsyncEventQueue队列用于存储和分发SparkListenerEvent事件. spark事件总线整体思想是生产消费者模式,消息事件实现了先进先出和异步投递,同时将事件的产生(例如spark core创建stage.提交job)和事件的处理(例如在Sp…
基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站的新闻自动分类,垃圾邮件检测,非法信息过滤等.本文将通过训练一个手机短信样本数据集来实现新数据样本的分类,进而检测其是否为垃圾消息,基本步骤是:首先将文本句子转化成单词数组,进而使用 Word2Vec 工具将单词数组转化成一个 K 维向量,最后通过训练 K 维向量样本数据得到一个前馈神经网络模型,以…
1.MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格算法(STING.WaveCluster等),等等. 较权威的聚类问题定义:所谓聚类问题,就是给…
算法说明 线性回归是利用称为线性回归方程的函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析方法,只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归,在实际情况中大多数都是多元回归. 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning).这类分析中训练数据集中给出的数据类型是确定的.机器学习的目标是,对于给定的一个训练数据集…
Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现 发表于2015-05-07 21:58| 10255次阅读| 来源<程序员>电子刊| 9 条评论| 作者孟祥瑞 大数据机器学习开源SparkMLlibALS 摘要:MLlib在1.3中添加了不少机器学习及数据挖掘算法:研究主题分布的LDA.估计点集分布的GMM.提取频繁项集的 FP-growth等等.本文主要聚焦ALS的实现及其在1.3中的提升. 深受用户喜爱的大数据处理平台 Apache Spark 1.3 于前不久发…
注:本章不涉及spark和scala原理的探讨,详情见其他随笔 一.分布式估算圆周率 计算原理:假设正方形的面积S等于x²,而正方形的内切圆的面积C等于Pi×(x/2)²,因此圆面积与正方形面积之比C/S就为Pi/4,于是就有Pi=4×C/S.可以利用计算机随机产生大量位于正方形内部的点,通过点的数量去近似表示面积.假设位于正方形中点的数量为Ps,落在圆内的点的数量为Pc,则随机点的数量趋近于无穷时,4×Pc/Ps将逼近于Pi. idea实现代码: package com.hadoop impo…
MLlib: RDD-based API This page documents sections of the MLlib guide for the RDD-based API (the spark.mllib package). Please see the MLlib Main Guide for the DataFrame-based API (the spark.ml package), which is now the primary API for MLlib. Data typ…
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first println(first) val files = rdd.map { case (fileName, content) => fileName.replace("file:", "") } println(files.first)println(files.coun…
Spring源代码解析(一):IOC容器:http://www.iteye.com/topic/86339 Spring源代码解析(二):IoC容器在Web容器中的启动:http://www.iteye.com/topic/86594 Spring源代码解析(三):Spring JDBC:http://www.iteye.com/topic/87034 Spring源代码解析(四):Spring MVC:http://www.iteye.com/topic/87692 Spring源代码解析(五…
  http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 MLlib是 Spark框架使用的核心.本书是一本细致介绍 Spark MLlib程序设计的图书,入门简单,示例丰富. 本书分为 12章,从 Spark基础安装和配置开始,依次介绍 MLlib程序设计基础.MLlib的数据对象构建.MLlib中 RDD使用介绍,各种分类.聚…
Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法,该方法返回一个MultivariateStatisticalSummary的实例.他封装了列的最大值,最小值,均值.方差.总数.如下所示: val conf = new SparkConf().setAppName("Simple Application").setMaster(&quo…
MLlib 支持存放在单机上的本地向量和矩阵,也支持通过多个RDD实现的分布式矩阵.因此MLlib的数据类型主要分为两大类:一个是本地单机向量:另一个是分布式矩阵.下面分别介绍一下这两大类都有哪些类型: 1.Local vector(本地向量) (1)Vector 最基本的类型是Vector,该类型索引是从0开始的整型类型,值类型是double类型.并提供了两个实现:DenseVector and SparseVector.但是一把情况下都是推荐使用工厂方法来创建Vector.如下所示: imp…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…
刚刚spark mllib,在maven repository网站http://mvnrepository.com/中查询mllib后得到相关库的最新dependence为: <dependency>        <groupId>org.apache.spark</groupId>        <artifactId>spark-mllib-local_2.11</artifactId>        <version>2.1.…