首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
强化学习 - Q-learning Sarsa 和 DQN 的理解
】的更多相关文章
增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)
接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数. 相对的,蒙特卡罗方法的特点则有: 可以从经验中学习不需要环境模型 状态值函数的估计是相互独立的 只能用于episode tasks 而我们希望的算法是这样的: 不需要环境模型 它不局限于episode task,可以用于连续的任务 本文介绍的时…
【转载】 强化学习(十)Double DQN (DDQN)
原文地址: https://www.cnblogs.com/pinard/p/9778063.html ----------------------------------------------------------------------------------------------- 在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得…
强化学习(Reinforcement Learning)中的Q-Learning、DQN,面试看这篇就够了!
1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报.在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列的rewards.RL最重要的3个特定在于: 基本是以一种闭环的形式: 不会直接指示选择哪种行动(actions): 一系列的actions和奖励信号(reward signals)都会影响之后较长的时间. 强化学习(…
强化学习 - Q-learning Sarsa 和 DQN 的理解
本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景: 一. 1个 5x5 的 格子图, 里面有一个目标点, 2个死亡点二. 一个迷宫, 一个出发点, 3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已. 对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已. Q-learning 步骤:场景一:假设前提: 成功的路 A1, A2, ..... An …
强化学习(十)Double DQN (DDQN)
在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法(以下简称DDQN). 本章内容主要参考了ICML 2016的deep RL tutorial和DDQN的论文<Deep Reinforcement Learning with Double Q-learning…
强化学习(Reinfment Learning) 简介
本文内容来自以下两个链接: https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ https://zhuanlan.zhihu.com/p/24446336?utm_source=weibo&utm_medium=social Q-learning Algorithm: 整个算法就是一直不断更新 Q table 里的值, 然后再根据新的值来判断要在某个 state 采取怎样的 action.…
爬格子问题(经典强化学习问题) Sarsa 与 Q-Learning 的区别
SARSA v.s. Q-learning 爬格子问题,是典型的经典强化学习问题. 动作是上下左右的走,每走一步就会有一个-1的奖赏.从初始状态走到最终的状态,要走最短的路才能使奖赏最大.图中有一个悬崖,一旦走到悬崖奖赏会极小,而且还要再退回这个初始状态. 个人编写代码如下: #encoding:UTF-8 #!/usr/bin/env python3 import math import random import matplotlib.pyplot as plt #动作的选择为上,下,左,…
强化学习 reinforcement learning: An Introduction 第一章, tic-and-toc 代码示例 (结构重建版,注释版)
强化学习入门最经典的数据估计就是那个大名鼎鼎的 reinforcement learning: An Introduction 了, 最近在看这本书,第一章中给出了一个例子用来说明什么是强化学习,那就是tic-and-toc游戏, 感觉这个名很不Chinese,感觉要是用中文来说应该叫三子棋啥的才形象. 这个例子就是下面,在一个3*3的格子里面双方轮流各执一色棋进行对弈,哪一方先把自方的棋子连成一条线则算赢,包括横竖一线,两个对角线斜连一条线. 上图,则是 X 方赢,即: reinforc…
Deep Learning专栏--强化学习之MDP、Bellman方程(1)
本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David Silver的课程的图,可以很清楚的看到整个交互过程.这就是人与环境交互的一种模型化表示,在每个时间点,大脑agent会从可以选择的动作集合A中选择一个动作$a_t$执行.环境则根据agent的动作给agent反馈一个reward $r_t$,同时agent进入一个新的状态. 根据上图的流程,任务…
强化学习(十一) Prioritized Replay DQN
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础上,对经验回放部分的逻辑做优化.对应的算法是Prioritized Replay DQN. 本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(I…