bzoj4785 [Zjoi2017]树状数组】的更多相关文章

4785: [Zjoi2017]树状数组 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 297  Solved: 195[Submit][Status][Discuss] Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种: 1 x,表示将 Ax 变成 (Ax + 1)…
可以发现这个写挂的树状数组求的是后缀和.find(r)-find(l-1)在模2意义下实际上查询的是l-1~r-1的和,而本来要查询的是l~r的和.也就是说,若结果正确,则a[l-1]=a[r](mod 2). 一个很容易想到的思路是线段树维护每一位为1的概率.然而这其实是不对的,因为每一位是否为1并非独立事件. 世界上没有什么事情是用一维线段树解决不了的,如果有,那就两维 我们维护每两位之间相同的概率.考虑一次操作对某两位的影响.若该次操作包含两位中的x位,那么改变两者间相同状态的概率就是x/…
题目链接 BZOJ4785 题解 肝了一个下午QAQ没写过二维线段树还是很难受 首先题目中的树状数组实际维护的是后缀和,这一点凭分析或经验或手模观察可以得出 在\(\mod 2\)意义下,我们实际求出的区间和是\([l - 1,r - 1]\),和\([l,r]\)唯一不同的就在于\(l - 1\)和\(r\) 所以每个询问实际是询问两个位置值相同的概率 我们把询问看做二元组\((a,b)\),其中\(a \le b\),我们要维护\((a,b)\)不同的概率[至于为什么是不同而不是相同,等下说…
Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种: 1 x,表示将 Ax 变成 (Ax + 1) mod 2. 2 l r,表示询问 sigma(Ai) mod 2,L<=i<=r 尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做.当时非常young 的她写了如下的算法: 1: functio…
分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\(r\)的后缀,\(\sum_{i=l-1}^{r-1}A_i\)),而答案为\(A_l\)到\(A_r\)的和(即\(\sum_{i=l}^{r}A_i\))这两种答案都包含\(A_l\)到\(A_{r-1}\)的和,因此只需判断\(A_{l-1}\)与\(A_r\)相等的概率就行了 那么怎么算? 考虑记下每…
[BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种: 1 x,表示将 Ax 变成 (Ax + 1) mod 2. 2 l r,表示询问 sigma(Ai) mod 2,L<=i<=r 尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做.当时非常yo…
题目描述 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种: 1 x,表示将 Ax 变成 (Ax + 1) mod 2. 2 l r,表示询问 sigma(Ai) mod 2,L<=i<=r 尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做.当时非常young 的她写了如下的算法: 1: function Add(x…
Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种: 1 x,表示将 Ax 变成 (Ax + 1) mod 2. 2 l r,表示询问 sigma(Ai) mod 2,L<=i<=r 尽管那个时候的可怜非常的 simple,但是她还是发现这题可以用树状数组做.当时非常young 的她写了如下的算 法: 其中 lowbi…
题目分析: 对于一个$add$操作,它的特点是与树状数组的查询相同,会给$1$到它自己产生影响,而$query$操作则会途径所有包含它的树状数组点.现在$add$操作具有前向性(不会影响之后的点).所以实际上这是求后缀和. 现在我们知道,对于$query(l,r)$,它等于${Xor}_{i=l-1}^{r-1}A[i]$.与原答案异或,得到$A[l-1] \oplus A[r]$,若它为$1$则假,否则为真.所以我们把它看作平面上的点,对于一个$add(l,r)$操作,会对右端点在其中的产生$…
http://uoj.ac/problem/291 (题目链接) 题意 一个写错的树状数组有多大的概率与正常树状数组得出的答案一样. Solution 可以发现这个树状数组维护的是后缀和. 所以二维线段树维护二维数点$(l,r)$,表示左端点$l$与右端点$r$被修改次数相等的几率有多大. 对于$l=1$的情况,另外开一个普通的线段树维护,操作不用重写. 细节 标记可持久化,不然好像会被hack数据卡TLE? 代码 // uoj291 #include<algorithm> #include&…