Sampling】的更多相关文章

一.序言   陆陆续续的如果累计起来,我估计至少有二十来位左右的朋友加我QQ,向我咨询有关抠图方面的算法,可惜的是,我对这方面之前一直是没有研究过的.除了利用和Photoshop中的魔棒一样的技术或者Photoshop中的选区菜单中的色彩范围类似的算法(这两个我有何PS至少90%一致的代码)是实现简单的抠图外,现在一些state of art 方面的算法我都不了解.因此,也浪费了不少的将知识转换为资产的机会.年30那天,偶然的一个机会,有位朋友推荐我看了一篇关于抠图的文章,并有配套的实现代码,于…
[原文链接:http://engineering.richrelevance.com/recommendations-thompson-sampling/.] [本文链接:http://www.cnblogs.com/breezedeus/p/3775339.html,转载请注明出处] Recommendations with Thompson Sampling 06/05/2014 • Topics: Bayesian, Big data, Data Science by Sergey Fel…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. --------------------------------------------------------------------------------------- 问题 随机抽样问题表示如下: 要求从N个元素中随机的抽取k个元素,其中N无法确定. 这种应用的场景一般是数据流的情况下,由于数据…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早…
如上图所示,计算区间[a  b]上f(x)的积分即求曲线与X轴围成红色区域的面积.下面使用蒙特卡洛法计算区间[2  3]上的定积分:∫(x2+4*x*sin(x))dx # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def f(x): return x**2 + 4*x*np.sin(x) def intf(x): return x**3/3.0+4.0*np.sin(x) - 4.0*x*n…
蓄水池采样算法 问题描述分析 采样问题经常会被遇到,比如: 从 100000 份调查报告中抽取 1000 份进行统计. 从一本很厚的电话簿中抽取 1000 人进行姓氏统计. 从 Google 搜索 "Ken Thompson",从中抽取 100 个结果查看哪些是今年的. 这些都是很基本的采用问题. 既然说到采样问题,最重要的就是做到公平,也就是保证每个元素被采样到的概率是相同的.所以可以想到要想实现这样的算法,就需要掷骰子,也就是随机数算法.(这里就不具体讨论随机数算法了,假定我们有了…
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the objects sequentially but you do not know the value of n beforehand? For concreteness, how would you read a text file, and select and print one random l…
4.3 抽样(Sampling) 用基于MapReduce的程序来处理TB级的数据集,要花费的时间可能是数以小时计.仅仅是优化代码是很难达到良好的效果. 在开发和调试代码的时候,没有必要处理整个数据集.但如果在这种情况下要保证数据集能够被正确地处理,就需要用到抽样了.抽样是统计学中的一个方法.它通过一定的过程从整个数据中抽取出一个子数据集.这个子数据集能够代表整体数据集的数据分布状况.在MapReduce中,开发人员可以只针对这个子数据集进行开发调试,极大减小了系统负担,提高了开发效率. 技术2…