1.matplotlib 首先看一下这个静态图绘制模块 静态图形处理 数据分析三剑客 Numpy : 主要为了给pandas提供数据源 pandas : 更重要的数据结构 matplotlib : 静态图形处理 海滨城市温度分析案例 导包 # 导包 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt from pylab import…
线性回归算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法. 1. 梯度下降法 线性回归可以使用最小二乘法,但是速度比较慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分为批量梯度下降法(Batch Gradient Descent)和随机梯度下降法(Stochastic Gradient Descent).批量梯度下降法每次迭代需要使用训练集里面的所有数据,当训练集数据量较大时,速度就很慢:随机梯度下降法每次迭代只需要一个…
本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理 最基本的机器学习算法必须是具有单个变量的线性回归算法.如今,可用的高级机器学习算法,库和技术如此之多,以至于线性回归似乎并不重要.但是,学习基础知识总是一个好主意.这样,您将非常清楚地理解这些概念.在本文中,我将逐步解释线性回归算法.…
文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的和最小.简单来说就是需要生成一个函数,它尽可能贴近实际数据中的每个值,方便我们预测. 核心算法 假设函数 即需要求的函数,为了简单在此只设置一个x对应一个y,求theta0和theta1 代价函数 目的是J最小,也就是每个y到达函数的距离之和最小. 批量梯度下降函数 带假设函数和代价函数带入到下降函…
本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable) 1. 线性回归算法(linear regression) 1.1 预测房屋价格 该问题属于监督学习中的回归问题,让我们来复习一下: 监督学习(Supervised'Learning'):对示例数据给出"正确答案". 回归问题(Regression 'Problem'):根据之前的数据预测出一个准确的输出值 . 1.2 训练集 m=训练样本数量 x's=输入变量/特征量 y'…
LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($y = w*x + b$).并通过优化算法对训练数据进行训练.最终得出最优(全局最优解或局部最优)参数的过程. y:我们需要预测的数值: w:模型的参数(即我们需要通过训练调整的的值) x:已知的特征值 b:模型的偏移量 我们的目的是通过已知的x和y,通过训练找出合适的参数w和b来模拟x与y之间的关…
在本人的新书里,将通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得.这里给出以线性回归算法预测股票的案例,以此讲述通过Python的sklearn库实现线性回归预测的技巧. 本文先讲以波士顿房价数据为例,讲述线性回归预测模型的搭建方式,随后将再这个基础上,讲述以线性预测模型预测股票的实现代码.本博文是从本人的新书里摘取的,新书预计今年年底前出版,敬请大家关注. 正文开始(长文预警) ------------------------------…
线性回归 线性回归,就是能够用一个直线较为精确地描述数据之间的关系.这样当出现新的数据的时候,就能够预测出一个简单的值. 线性回归中最常见的就是房价的问题.一直存在很多房屋面积和房价的数据,如下图所示: 在这种情况下,就可以利用线性回归构造出一条直线来近似地描述放假与房屋面积之间的关系,从而就可以根据房屋面积推测出房价. 线性回归模型 通过线性回归构造出来的函数一般称之为了线性回归模型.线性回归模型的函数一般写作为: 使用markdown不好描述数学公式,所以大家就讲究看吧 代价函数 通过线性回…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…