聚类--DBSCN】的更多相关文章

1.什么是DBSCN DBSCAN也是一个非常有用的聚类算法. 它的主要优点:它不需要用户先验地设置簇的个数,可以划分具有复杂形状的簇,还可以找出不属于任何簇的点. DBSCAN比凝聚聚类和k均值稍慢,但仍可以扩展到相对较大的数据集. 1.1算法原理 DBSCAN的原理是识别特征空间的"拥挤"区域中的点,在这些区域中许多数据点靠近在一起.这些区域被称为特征空间中的密集区域. DBSCAN背后的思想:簇形成数据的密集区域,并由相对较空的区域分隔开. 在密集区域内的点被称为核心样本(或核心…
在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在scikit-learn的类库中,sklearn.cluster.SpectralClustering实现了基于Ncut的谱聚类,没有实现基于RatioCut的切图聚类.同时,对于相似矩阵的建立,也只是实现了基于K邻近法和全连接法的方式,没有基于$\epsilon$-邻近法的相似矩阵.最后一步的聚类方…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit-learn中的DBSCAN类 在scikit-learn中,DBSCAN算法类为sklearn.cluster.DBSCAN.要熟练的掌握用DBSCAN类来聚类,除了对DBSCAN本身的原理有较深的理解以外,还要对最近邻的思想有一定的理解.集合这两者,就可以玩转DBSCAN了. 2. DBSCAN…
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-Means,BIRCH这些一般只适用于凸样本集的聚类相比,DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集.下面我们就对DBSCAN算法的原理做一个总结. 1. 密度聚类原理 DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定.同一类别的样本,他们…
在BIRCH聚类算法原理中,我们对BIRCH聚类算法的原理做了总结,本文就对scikit-learn中BIRCH算法的使用做一个总结. 1. scikit-learn之BIRCH类 在scikit-learn中,BIRCH类实现了原理篇里讲到的基于特征树CF Tree的聚类.因此要使用BIRCH来聚类,关键是对CF Tree结构参数的处理. 在CF Tree中,几个关键的参数为内部节点的最大CF数B, 叶子节点的最大CF数L, 叶节点每个CF的最大样本半径阈值T.这三个参数定了,CF Tree的…
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登后,陆陆续续收到本科生.研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复. 另外一个原因也是时间久了,我对于论文以及改进的算法的记忆也越来越模糊,或者那天无意间把代码遗失在哪个角落,真的很难想象我还会全…
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的一种聚类算法,是BIRCH层次聚类算法的改进版本.可以应用于混合属性数据集的聚类,同时加入了自动确定最佳簇数量的机制,使得方法更加实用.本文在学习文献[1]和“IBM SPSS Modeler 15 Algorithms Guide”的基础上,融入了自己的理解,更详尽地叙述两步聚类算法的流程和细节.…
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu…
在K-Means聚类算法原理中,我们讲到了K-Means和Mini Batch K-Means的聚类原理.这里我们再来看看另外一种常见的聚类算法BIRCH.BIRCH算法比较适合于数据量大,类别数K也比较多的情况.它运行速度很快,只需要单遍扫描数据集就能进行聚类,当然需要用到一些技巧,下面我们就对BIRCH算法做一个总结. 1. BIRCH概述 BIRCH的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using H…