本文使用深度神经网络完成计算蛋白质设计去预测20种氨基酸概率. Introduction 针对特定结构和功能的蛋白质进行工程和设计,不仅加深了对蛋白质序列结构关系的理解,而且在化学.生物学和医学等领域都有广泛的应用.在过去的三十年里,蛋白质设计取得了显著的成功,其中一些设计是由计算方法指导的.最近一些成功的计算蛋白设计的例子包括新折叠,酶设计,疫苗,抗体,新的蛋白质组装,配体结合蛋白和膜蛋白. Results Networks architecture, input, and training…
Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-12-19 13:02:45 This blog is copied from: https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/ Deep learning neural ne…
本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异常敏感. 使用集成模型可以有效降低神经网络的高方差(variance). 2. 使用集成模型降低方差 训练多个模型,并将预测结果结合到一起,能够降低方差. 多模型集成能起到作用的前提是,每个模型有自己的特点,每个模型预测出的误差是不同的. 简单的集成方式就是将预测结果取平均,该方法起作用的原因是,不…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, dis…
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中.在测试数据上,我们得到了top-1 37.5%, top-5 17.0%的错误率,这个结果比目前的最好结果好很多.这个神经网络有6000万参数和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 和之间的LeNet还是有着异曲同工之妙.这里涉及到 category 种类多的因素,该网络考虑了多通道卷积操作, 卷积操作也不是 LeNet 的单通道…
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有…