Solution -「HDU」Professor Ben】的更多相关文章

Description 有 \(Q\) 个询问.每次给定一个正整数 \(n\),求它的所有因数的质因数个数的和. Solution 就讲中间的一个 Trick. 我们定义正整数 \(x\) 有 \(f(x)\) 个因数,且存在一函数 \(g(x) = \sum_{i | x} f^3(i)\),显然 \(g(x)\) 即 \(x\) 对应的答案. 那么,若 \(x = p^a\),则由因数个数定理可得: \(f(x) = a + 1\). 且其因数集合可表示为:\(\{p^0, p^1, ...…
记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数容纳下就一定至少有,\(\sum \limits _{i = 1 \to k} a_i < n^2\).但这个限制太弱了可恶. 考虑一种构造,一排全放数字,一排隔一个放一个.感觉可以做到最优. 接下来考虑普适化的细节,即需要满足对角线数组不同. 全放数字的就直接往上怼,不够换下一个数字,顺序填即可.…
题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他暗笑,笑自己多情. 「暖」 正恍惚,忽见她闪进门帘. 慢步,靠近,站定,俯身.一抹浅笑挟带着闪闪泪光刻印在时光里. 沉醉于这美好,四周空气开始有了温度,刚刚好的温度. 「坠」 起身,伸出手,他想轻抚过那朝思暮想的面颊. 但他做不到,他发现他在坠落,没有尽头. 深渊是主犯,不断向下延伸,贪婪地吞噬这尘…
\(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_{i,j}\),现可将一些不相邻的格子染黑,并保证白格子在四联通意义下存在哈密顿回路,方案的价值为染色格子权值之和.求方案的最大价值.   \(n\le10\),数据组数 \(T\le30\). \(\mathcal{Solution}\)   Emmm...插头 DP 写得太少了,这题还算比较常规…
\(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成树的方案总数,对 \(p\) 取模. \(\mathcal{Solution}\)   首先求出 \(n-1\) 条边构成生成树的方案数,显然矩阵树定理.   接着,令 \(f(i,j)\) 表示操作 \(i\) 次,去重后有 \(j\) 条边的方案数.那么有: \[f(i,j)=jf(i-1,j)…
\(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\le m\).   \(n\le2\times10^3\),\(m\le10^6\),\(w_u\in[1,m]\),数据组数 \(T\le10\). \(\mathcal{Solution}\)   很明显是点分,每次考虑跨当前分治重心 \(r\) 的所有连通块对答案的贡献.问题变为:求树上以 \…
\(\mathcal{Description}\)   Link.   解同余方程组: \[x\equiv m_i-a\pmod{m_i} \]   其中 \(i=1,2,\dots,n\).   \(n\le10\),\(a<m_i<100\),多测(假设常规 CRT 不可过). \(\mathcal{Solution}\)   显: \[x=\operatorname{lcm}(m_1,m_2,\cdots,m_n)-a \]   复杂度 \(\mathcal O(n\log\max\{m…
\(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[\left|\arg\max_{\sum_{u\in S} a_u=k}\sum_{u\in S}b_u\right| \]   其中 \(S\) 是树上的一个独立点集.   测试数据组数 \(\le20\),\(n\le50\),\(m\le5\times10^3\). \(\mathcal{So…
\(\mathcal{Description}\)   Link.(几乎一致)   给定 \(n\) 个点 \(m\) 条边的仙人掌和起点 \(s\),边长度均为 \(1\).令 \(d(u)\) 表示 \(u\) 到 \(s\) 的最短距离.对于任意一个结点的排列 \(\{p_1,p_2,\cdots,p_n\}\),记 \(t_i\) 满足 \(p_{t_i}=i\),称排列合法,当且仅当: \[(\forall(u,v)\in E)\left((d(u)<d(v)\rightarrow t…
\(\mathcal{Description}\)   Link(削弱版).   \(n\) 张纸叠在一起对折 \(k\) 次,然后从上到下为每层的正反两面写上数字,求把纸重新摊平后每张纸上的数字序列.   \(n\le10\),\(k\le19\). \(\mathcal{Solution}\)   模拟摊平操作,对于每一层维护一个双向链表(实际指针的方向并不重要,不要纠结两个叫 pre 的指针相互指的问题),每次把上一半的反向接到下一半即可.   复杂度 \(\mathcal O(n2^k)…