P8618 [蓝桥杯 2014 国 B] Log 大侠】的更多相关文章

1678: Log大侠 java 时间限制: 2 Sec  内存限制: 256 MB提交: 20  解决: 1 题目描述     atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1]  其中 [] 表示向下取整,就是对每个数字求以2为底的对数,然后取下整.    例如对序列 3 4 2 操作一次后,这个序…
蓝桥杯 枚举 奇怪的分式 标题:奇怪的分式 上小学的时候,小明经常自己发明新算法.一次,老师出的题目是: 1/4 乘以 8/5 小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png) 老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼! 对于分子.分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢? 请写出所有不同算式的个数(包括题中举例的). 显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式. 但对于分子分母相同的情况…
/*——————————————————————————————————————————————————————————— [结果填空题]T1 题目:啤酒和饮料 啤酒每罐2.3元,饮料每罐1.9元.小明买了若干啤酒和饮料,一共花了82.3元. 我们还知道他买的啤酒比饮料的数量少,请你计算他买了几罐啤酒. 注意:答案是一个整数.请通过浏览器提交答案. 不要书写任何多余的内容(例如:写了饮料的数量,添加说明文字等). —————————————————————————————————————————…
标题:李白打酒 话说大诗人李白,一生好饮.幸好他从不开车. 一天,他提着酒壶,从家里出来,酒壶中有酒2斗.他边走边唱: 无事街上走,提壶去打酒. 逢店加一倍,遇花喝一斗. 这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了. 请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b.则:babaabbabbabbbb 就是合理的次序.像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的). 注意:通过浏览器提交答案.答案是个整数.不要书写任何多…
标题:六角填数 如图[1.png]所示六角形中,填入1~12的数字. 使得每条直线上的数字之和都相同. 图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少? 请通过浏览器提交答案,不要填写多余的内容. 简单的枚举排列,只要提前将12个结点标号,来判断六个线段总和是否相等. 答案是 10       (num[7]这是我标定的序号) 代码如下: #include<iostream> #include<cstdio> #include<cstring> #de…
历届试题 地宫取宝   时间限制:1.0s   内存限制:256.0MB 问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿). 当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明. 请你帮小明算一算,在给定的局面下,他有多少种不…
思路:从大到小枚举,判断其平方是否不重复 答案:9814072356 //水题 标题:平方十位数 由0~9这10个数字不重复.不遗漏,可以组成很多10位数字. 这其中也有很多恰好是平方数(是某个数的平方). 比如:1026753849,就是其中最小的一个平方数. 请你找出其中最大的一个平方数是多少? 注意:你需要提交的是一个10位数字,不要填写任何多余内容. public class Main { public static void main(String[] args) { // TODO…
链接 [蓝桥杯][2014年第五届真题]地宫取宝 题目描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿). 当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明. 请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件…
标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1]  其中 [] 表示向下取整,就是对每个数字求以2为底的对数,然后取下整.     例如对序列 3 4 2 操作一次后,这个序列会变成 2 3 2.         drd需要知道,每次这样操作后,序列的和是多少. [输入格式] 第一行…
LOG大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力- 变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1] 其中 [] 表示向下取整,就是对每个数字求以2为底的对数,然后取下整. 例如对序列 3 4 2 操作一次后,这个序列会变成 2 3 2. drd需要知道,每次这样操作后,序列的和是多少. [输入格式] 第一行两个正整数 n m . 第二行 n…