大家好,我是来自 Juicedata 的高昌健,今天想跟大家分享的主题是<JuiceFS 在数据湖存储架构上的探索>,以下是今天分享的提纲: 首先我会简单的介绍一下大数据存储架构变迁以及它们的优缺点,然后介绍什么是 JuiceFS,其次的话会再重点介绍一下关于 JuiceFS 和数据湖的一些结合和关联,最后会介绍一下 JuiceFS 和数据湖生态的集成. 大数据存储架构变迁 纵观整个大数据存储架构的变迁,可以看到有非常明显的三个阶段:第一个阶段就是从最早的 Hadoop.Hive 等项目诞生之…
本系列学习教程使用的是cocos2d-x-2.1.4(最新版为3.0alpha0-pre) ,PC开发环境Windows7,C++开发环境VS2010 一般游戏中都需要记录玩家数据,便于玩家下次登录时能够接着上次的游戏记录继续游戏.这样一来就需要我们在 开发时对玩家数据进行存档与读档.对于游戏数据的存储,在不同手机操作系统下都有自己的存储方式,例如常见的 SQLite等,在Cocos2D-X引擎中考虑到跨平台性,它也为开发者提供了跨平台的存储相关类CCUserDefault,那么这 一期我们就一…
JindoFS背景 计算存储分离是云计算的一种发展趋势,传统的计算存储相互融合的的架构存在一定的问题, 比如在集群扩容的时候存在计算能力和存储能力相互不匹配的问题,用户在某些情况下只需要扩容计算能力或者存储能力,传统的融合架构不能单独的扩充计算或者存储能力, 而计算存储分离可以很好的解决这个问题,用户只需要关心整个集群的计算能力. 基于OSS 计算存储分离 EMR 现有的计算存储分离方案是基于OSS提供兼容Hadoop文件系统的OssFS, 用户通过OssFS 可以访问OSS 上的数据, 因此O…
背景 相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 数据湖的核心功能,简单地可以分为数据存储与数据查询计算两个部分,在云端可以有多种的实现选择.在之前的文章中,我们曾介绍Azure上Azure Data Lake Storage (ADLS Gen1)和Azure Data Lake Analytics (ADLA)这一对可配合使用的服务.这对黄金搭档正是为数据湖而生…
01 前言 数据湖(Data Lake)概念自2011年被推出后,其概念定位.架构设计和相关技术都得到了飞速发展和众多实践,数据湖也从单一数据存储池概念演进为包括 ETL 分析.数据转换及数据处理的下一代基础数据平台. 如果需要给数据湖下一个定义,可以定义为:数据湖是一个企业的各种各样原始数据的大型仓库,其中的数据可供存取.处理.分析及传输.数据湖是一种存储架构,本质上讲是存储,所以通常情况下会用最经典的对象存储,比如用腾讯云对象存储 COS 当数据湖的地基. ​ 数据湖从企业的多个数据源获取原…
引言 相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 因此数据湖相关服务成为了云计算的发展重点之一.Azure平台早年就曾发布第一代Data Lake Storage,随后微软将它与Azure Storage进行了大力整合,于今年初正式对外发布了其第二代产品:Azure Data Lake Storage Gen2 (下称ADLS Gen2).ADLS Gen2的口号是…
相较传统的重量级OLAP数据仓库,“数据湖”以其数据体量大.综合成本低.支持非结构化数据.查询灵活多变等特点,受到越来越多企业的青睐,逐渐成为了现代数据平台的核心和架构范式. 作为微软Azure上最新一代的数据湖服务,Data Lake Storage Gen2的发布,将云上数据湖的能力和体验提升上了一个新的台阶.在前面的文章中,我们已分别介绍了其基本使用和大数据集群挂载的场景.作为本系列的下篇,让我们继续深度体验之旅. ADLS Gen2体验:数据湖共享 在企业中,一个庞大的数据湖往往需要被共…
1. 起源 作为印度最大的在线杂货公司的数据工程师,我们面临的主要挑战之一是让数据在整个组织中的更易用.但当评估这一目标时,我们意识到数据管道频繁出现错误已经导致业务团队对数据失去信心,结果导致他们永远无法确定哪个数据源是正确的并且可用于分析,因此每个步骤都会咨询数据平台团队,数据平台团队原本应该提供尽可能独立地做出基于数据的正确决策而又不减慢速度的工具. 现代数据平台会从许多不同的.不互连的,不同系统中收集数据,并且很容易出现数据收集问题,例如重复记录,错过更新等.为解决这些问题,我们对数据平…
背景 大数据发展至今,按照 Google 2003年发布的<The Google File System>第一篇论文算起,已走过17个年头.可惜的是 Google 当时并没有开源其技术,"仅仅"是发表了三篇技术论文.所以回头看,只能算是揭开了大数据时代的帷幕.随着 Hadoop 的诞生,大数据进入了高速发展的时代,大数据的红利及商业价值也不断被释放.现今大数据存储和处理需求越来越多样化,在后 Hadoop 时代,如何构建一个统一的数据湖存储,并在其上进行多种形式的数据分析,…
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题: 问题一:不支持事务 由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误.为了规避该问题,通常控制读写任务顺序调用,在保证写任务完成后才能启动读任务.但并不是所有读任务都能够被调度系统约束住,在读取时仍存在该问题.…