6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https://scholar.google.com.hk/scholar_url?url=https://arxiv.org/pdf/1809.02657&hl=zh-TW&sa=X&ei=bSGfYviOJOOEywThnbSYCQ&scisig=AAGBfm0bzwUuDvjnCX…
4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812.09430 Abstract 提出了在动态图上使用自注意力 Conclusion 本文提出了使用自注意力的网络结构用于在动态图学习节点表示.具体地说,DySAT使用(1)结构邻居和(2)历史节点表示上的自我注意来计算动态节点表示,虽然实验是在没有节点特征的图上进行的,但DySAT可以很容易地推广到特…
Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Peng.Jie Xu, Xiaoshuang Shi.Xiaofeng ZhuSources:2022 AAAIPaper:downloadCode:download Abstract 作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习.具体而言,通过构造多重损失探索结构信息与邻域信息之…
论文信息 论文标题:Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning论文作者:Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, Yangyong Zhu论文来源:2020 ICDM论文地址:download 论文代码:download 1 Introduction 创新点:提出一种新的子图对比度自监督表示学习方法,利用…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
[论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 传统的异构网络中的随机游走常常偏向于采样节点数比较多的节点类型.为了克服该问题,metapath2vec提出了基于元路径的随机游走,然而使用元路径策略要么要求先验知识,要么需要通过额外的操作来结合所有短的元路径到一个预定义的序列长度(如多元路径的情况,如何取舍,哪个更重要?).…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning论文作者:Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, Shirui Pan论文来源:2021, IJCAI论文地址:download 论文代码:download 1 Introduction 创新:融合交叉视图对比和交叉网…
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang论文来源:WWW 2020论文地址:download代码地址:download 前言 1.自监督学习(Self-supervised):属于无监督学习,其核心是自动为数据打标签(伪标签或其他角度的可信标签,包括图像的旋转.分块等等),通过让网络按照既定的规则,对数据打出正确的标签来更好地进行特征表示…
Paper Information 论文作者:Zhen Peng.Wenbing Huang.Minnan Luo.Q. Zheng.Yu Rong.Tingyang Xu.Junzhou Huang论文来源:WWW 2020论文地址:download代码地址:download 前言 1.自监督学习(Self-supervised):属于无监督学习,其核心是自动为数据打标签(伪标签或其他角度的可信标签,包括图像的旋转.分块等等),通过让网络按照既定的规则,对数据打出正确的标签来更好地进行特征表示…
论文信息 论文标题:Graph Representation Learning via Contrasting Cluster Assignments论文作者:Chun-Yang Zhang, Hong-Yu Yao, C. L. Philip Chen, Fellow, IEEE and Yue-…
2 DynGEM: Deep Embedding Method for Dynamic Graphs link:https://arxiv.org/abs/1805.11273v1 Abstract 首先这个嵌入是基于deep autoencoder的 该论文提出了三个主要优势: (1)随着时间的推移,该方法嵌入是稳定的 (2)能处理不断增长的动态图 (3)它比在动态图的每个快照上使用静态嵌入方法具有更好的运行时间 Conclusion DynGEM使用动态扩展的深度自动编码器来捕获高度非线性的…
目录 摘要 一.引言 二.相关工作 三.我们的方法 3.1 边缘卷积Edge Convolution 3.2动态图更新 3.3 性质 3.4 与现有方法比较 四.评估 4.1 分类 4.2 模型复杂度 4.3 在ModelNet40上的更多实验 4.4 部件分割 4.5 室内场景分割 五.讨论 Dynamic Graph CNN for Learning on Point Clouds 论文地址:https://arxiv.org/abs/1801.07829 代码:https://github…
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Roger Wattenhofer论文来源:2021, arXiv论文地址:download 论文代码:download 1 Introduction 创新点:从对抗攻击和对抗防御考虑数据增强策略. 2 Graph robust contrastive learning 2.1 Background 目…
[code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据(warrant0,warrant1)哪个能支持前提到陈述的推理. 他们还在 SemEval-2018 中指出,这个任务不仅需要模型理解推理的结构,还需要一定的外部知识. 作者尝试使用 BERT 处理该任务,调整输入为 [CLS,Claim,Reason,SEP,Warrant],通过共用的 linear l…
摘要: 无状态网络功能是一个新的网络功能虚拟化架构,解耦了现有的网络功能设计到无状态处理组件以及数据存储层,在打破紧密耦合的同时,实现了更具可伸缩性和可恢复性的网络功能基础设施.无状态NF处理实例是围绕高效管道构建的,利用DPDK实现高性能网络I/O,打包为Docker容器以便于部署,以及基于预期请求模式优化的数据存储接口,以高效访问基于Ramcloud的数据存储.网络范围的编排器监视实例的负载和故障,管理实例以扩展和提供弹性,并利用基于OpenFlow的网络将流量定向到实例. 我们实现了三个示…
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…
一.论文提出的方法: 使用进入ICU前48h的用药特征作为预测因子预测重症监护患者的死亡率和ICU住院时间. 用到了联邦学习,自编码器,k-means聚类算法,社区检测. 数据集:从50家患者人数超过600人的医院,每个医院抽取560名患者形成最终的28000例数据集,20000作为训练集,8000作为测试集. 二.具体实现: 1.每个医院各自训练自编码器重构药物特征 2. 每个医院用将各自data转换为向量表示,然后将所有医院的平均值返回给server 3. Server使用k-means算法…
Introduction (1)IVPR问题: 根据一张图片从视频中识别出行人的方法称为 image to video person re-id(IVPR) 应用: ① 通过嫌犯照片,从视频中识别出嫌犯: ② 通过照片,寻找走失人口. (2)图片-视频行人匹配问题的描述: (3)IVPR的难点: ① 图像.视频的特征不同:视频包含视觉外貌特征(visual appearance features)和时空特征(spatial-temporal features),而图片只包含视觉外貌特征: ② I…
A Convex Optimization Framework for Active Learning Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. 目前AL方法存在的问题有: 1.大部分AL算法在预训练分类器之…
9 Real-Time Streaming Graph Embedding Through Local Actions 11 link:https://scholar.google.com.sg/scholar_url?url=https://par.nsf.gov/servlets/purl/10109798&hl=zh-TW&sa=X&ei=SyiOYtaXG-CO6rQPzPWC4Ac&scisig=AAGBfm3aT0E5adlGC7Ygeu2vb7WxgQF2lA…
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning论文作者: Kaize Ding .Yancheng Wang .Yingzhen Yang.…
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者:Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, Stan Z. Li论文来源:2022, WWW论文地址:download 论文代码:download 1 Introduction 对比学习种数据增强存在的三个问题: First, the augmentati…
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, Huan Liu论文来源:2022, arXiv论文地址:download 1 介绍 本文主要总结图数据增强,并对该领域的代表性方法做出归类分析. DGL 存在的两个问题: 次优图问题:图中包含不确定.冗余.错误和缺失的节点特征或图结构边. 有限标签问题:标签数据成本高,目前大部分 DGL 方法是…
导言 传统的神经网络都是基于固定的数据集进行训练学习的,一旦有新的,不同分布的数据进来,一般而言需要重新训练整个网络,这样费时费力,而且在实际应用场景中也不适用,所以增量学习应运而生. 增量学习主要旨在解决灾难性遗忘(Catastrophic-forgetting) 问题,本文将要介绍的<iCaRL: Incremental Classifier and Representation Learning>一文中对增量学习算法提出了如下三个要求: a) 当新的类别在不同时间出现,它都是可训练的 b…
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoqi Fan. Yuxin Wu. Saining Xie. Ross Girshick 论文来源:arXiv 论文来源:https://github.com/facebookresearch/moco 1 主要思想 文章核心思想是使用基于 Contrastive learning 的方式自监督的训练一个图片表…
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, Liang Wang论文来源:2020, ArXiv论文地址:download 代码地址:download Abstract 在本文中,作者提出了一个利用节点级对比目标的无监督图表示学习框架.具体来说,通过破坏原始图去生成两个视图,并通过最大化这两个视图…
5 DyREP:Learning Representations Over Dynamic Graphs link:https://scholar.google.com/scholar_url?url=https://par.nsf.gov/servlets/purl/10099025&hl=zh-CN&sa=X&ei=kIF4YrmVJ-OM6rQPxfOKUA&scisig=AAGBfm3I4EpwNkRLc5xhuaLEs47V0XWOzA&oi=schola…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原文:Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 博文参考:Doublle Tree的博客中Evaluate the Malignancy of Pulmonary Nodu…