Tarjan 连通性】的更多相关文章

Tarjan 连通性 Tarjan 爷爷的代表作,图的连通性问题直接解决 两个核心数组: \(dfn_u\):\(u\) 的 dfs 序 \(low_u\):\(u\) 及 \(u\) 的后代通过返祖边能回到的最小的 \(dfn\) 四种边 树边:dfs 搜索树中的边 返祖边:若在搜索树中, \(i\) 是 \(j\) 的祖先,则原图中从 \(j\) 到 \(i\) 的边是返祖边 前向边:若在搜索树中, \(i\) 是 \(j\) 的后代,则原图中从 \(j\) 到 \(i\) 的边是前向边 交…
题目大意:给你一棵n个节点的树,这n条边称为原边,另给出m条带权值的额外边,求删去每条原边后通过给出的m额外条边变回一棵树的最小价值.题解:看完题面以为是Tarjan连通性之类的题目,冷静分析后想到是树链剖分,自己真是Too young too simple.首先将这棵树进行树链剖分,对于每条额外边x-y,可以作为原树上x-y的路径上的任意一条边删去时的答案,所以路径更新最小值即可.树链剖分+线段树维护区间最小值,边权转点权的技巧直接把这条边的权值赋到儿子节点上,查找更新时不找LCA即可...输…
#1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出去,就拜托小Hi和小Ho忙帮放牧. 约翰家一共有N个草场,每个草场有容量为W[i]的牧草,N个草场之间有M条单向的路径. 小Hi和小Ho需要将牛羊群赶到草场上,当他们吃完一个草场牧草后,继续前往其他草场.当没有可以到达的草场或是能够到达的草场都已经被吃光了之后,小hi和小Ho就把牛羊群赶回家. 一开…
#1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢失.为了避免再次出现这样的情况,学校决定对校园网络进行重新设计. 学校现在一共拥有N台服务器(编号1..N)以及M条连接,保证了任意两台服务器之间都能够通过连接直接或者间接的数据通讯. 当发生黑客攻击时,学校会立刻切断网络中的一条连接或是立刻关闭一台服务器,使得整个网络被隔离成两个独立的部分. 举个…
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low[y]>=dfn[x],表示搜索树中y为根的子树必须要通过x才能到达树的上端,则x必为割点. x属于多个点双联通分量,所以出栈的时候保留x(所以栈出到y就好!否则可能会把其他支路的节点一起出栈). 附上一个小例子. 这个打个模板吧. #include<cstdio> #include<…
关于基础知识的预备桥和割点.双联通分量.强连通分量,支配树.(并不会支配树) 关于有向图的Tarjan,是在熟悉不过的了,它的主要功能就是求强联通分量,缩个点,但是要注意一下构建新图的时候有可能出现重边(即使原图没有重边),他还时常和拓扑排序放在一起.eg: #include<cstdio> #include<cstring> #include<algorithm> <<)+],*xS=xB,*xT=xB; #define gtc (xS==xT&&…
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,依次给予N个节点1~N的整数标记,该标记被称为“时间戳”,记为dfn[x] 搜索树在无向连通图中任选一个节点出发进行深度优先遍历吗,每个节点只访问一次.所有发生递归的边(x, y)构成一棵…
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至少存在一条路径(即a能到b,b也能到a),则称两个顶点强连通:如果该有向图G中任意两顶点都强连通,则称G为强连通图:在一个非强连通图中,若有子图是强连通图,则称该子图为强连通分量. 有向图强连通分量+链式前向星 模板如下: ; ; struct edge { int next,to; }E[MAXN…
概念 流图 给定一个有向图G= (V,E),若存在r∈V满足,满足从r出发能够到达V中所有的点,则称G是一个流图,记为(G,r),其中r是流图的源点. 流图的搜索树 在一个流图(G,r)上从r出发,进行深度优先遍历(DFS),每个点只访问一次.所有发生递归的变(u,v)(换言之,从x到y是对y的第一次访问)构成的一颗以r为根的树我们把它称为流图(G,r)的搜索树. 时间戳 同时,我们在深度优先遍历的过程中按照每个节点第一次被访问的时间顺序,依次给予流图中每个点1~n的标记,该点的标记被称作时间戳…