有标号DAG计数(生成函数)】的更多相关文章

有标号DAG计数(生成函数) luogu 题解时间 首先考虑暴力,很容易得出 $ f[ i ] = \sum\limits_{ j = 1 }^{ i } ( -1 )^{ j - 1 } \binom{ i }{ j } 2^{ j( i - j ) } f[ i-j ] $ . 相当于枚举度数为0的节点的个数,向不在这个集合里的点任意连边,之后需要容斥. 考虑如何优化. $ j(i-j) = \frac{ i^{ 2 } }{ 2 } - \frac{ j^{ 2 } }{ 2 } - \f…
有标号DAG计数 题目在COGS上 [HZOI 2015]有标号的DAG计数 I [HZOI 2015] 有标号的DAG计数 II [HZOI 2015]有标号的DAG计数 III I 求n个点的DAG(可以不连通)的个数.\(n \le 5000\) 2013年王迪的论文很详细了 感觉想法很神,自己怎么想到啊? 首先要注意到DAG中一类特殊的点:入度为0的点.以这些点来分类统计 先是一种\(O(N^3)\)的dp, \(d(i,j)\) i个点j个入度为0,转移枚举去掉j个后入度为0点的个数,…
P6295 有标号 DAG 计数 题意 求 \(n\) 个点有标号弱联通 DAG 数量. 推导 设 \(f_i\) 表示 \(i\) 个点有标号 DAG 数量(不保证弱联通),有: \[f(i)=\sum_{j=1}^i\binom ij(-1)^{j-1}f(i-j)2^{j(i-j)} \] 意义为选至少 \(j\) 个度数为零的点,向剩下的 \(i-j\) 个点随便连有向边,容斥一下就得到了上式. 下面进行推导.根据一个 trick: \[j(i-j)=\binom i2-\binom j…
洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n\) 表示 \(n\) 个点的有标号 DAG 个数,\(g_n\) 表示 \(n\) 个点的有标号且弱联通的 DAG 个数,那么根据 \(\exp\) 式子的计算方式我们可以列出 \(f,g\) 生成函数之间的 exp 关系,又因为这题带标号,所以有: Trick 1. 对于有标号图连通图计数问题,…
题目传送门 题目大意 给出\(n\),求出对于任意\(t\in[1,n]\),点数为\(t\)的弱联通\(\texttt{DAG}\)个数.答案对\(998244353\)取模. \(n\le 10^5\) 思路 看到\(\texttt{Karry5307}\)的题解里面有很多小问题(但这并不影响\(\texttt {Karry AK IOI}\)),这里给一篇可能没有什么错误的题解. 我们发现直接求似乎不是很好求,我们发现弱连通图组合在一起的话,就相当于一个不保证联通的\(\texttt{DA…
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题思路 先不考虑弱联通的限制,求\(n\)个点的\(DAG\)数量. 设为\(f_i\),那么有式子 \[f_n=\sum_{i=1}^{n}\binom{n}{i}2^{i(n-i)}f_{n-i}(-1)^{i+1} \] 这个式子的意思是说新建一层出度为\(0\)的点,\(\binom{n}{i…
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 5000\) 题解 显然是\(O(n^2)\)来做. 设\(f(i)\)表示\(i\)个点有标号的有向无环图的个数.而\(DAG\)中的特殊点显然只有两种,要么是出度为\(0\),要么入度为\(0\).随便枚举哪一种都行,这里枚举入度为\(0\)的点. 那么得到式子: \[f(n)=\sum_{i=1}^…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 数据范围和约定 对于第i个点 1<=n<=10000*i 增大了数据范围. 题目分析 COGS2353 [HZOI2015]有标号的DAG计数 I升级版. 在这道题的基础上继续往下化: \[ \begin{split} f(n)&=\sum_{i=1}^n\frac {n!}{(n-…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答案. 样例输入 3 样例输出 18 提示 对于第i个点 1<=n<=10000i. 题目分析 综合COGS2355 [HZOI 2015] 有标号的DAG计数 II与[2013集训胡渊鸣]城市规划. \(f(i)\)用前一题的方法求出,用后一题的方法推出\(g(i)\)即为答案. 代码实现 #in…
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就好了 //@winlere #include<iostream> #inc…