【Hadoop学习之一】Hadoop介绍】的更多相关文章

1.检查网络状况 Dos命令:ping ip地址,同时,在Linux下通过命令:ifconfig可以查看ip信息2.修改虚拟机的ip地址    打开linux网络连接,在桌面右上角,然后编辑ip地址,修改ip地址后,重启网络服务:service network restart,如果网络重启失败,可以在虚拟机网络设置中心删除网络连接,然后重新启动Linux,接着在网络设置中心重新设置ip地址,最后重启Linux3.修改从节点主机名    vi /etc/sysconfig/network 修改主机…
先前已经做了准备工作安装jdk什么的,以下開始ssh免password登陆.这里我们用的是PieTTY工具,当然你也能够直接在linux下直接操作 ssh(secure shell),运行命令 ssh-keygen -t rsa产生密钥,位于~/.ssh目录中 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmVlZGthbmU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/grav…
Hadoop下有一些经常使用的命令,通过这些命令能够非常方便操作Hadoop上的文件. 1.查看指定文件夹下的内容 语法: hadoop fs -ls 文件文件夹 2.打开某个已存在的文件 语法: hadoop fs -cat 文件地址 [ | more] []表示的是可选命令 3.将本地文件存到Hadoop 语法: hadoop fs -put 本地文件地址 Hadoop文件夹 4.将Hadoop上的文件下载到本地文件夹内 语法: hadoop fs -get Hadoop文件夹 本地文件文件…
注:本文的主要目的是为了记录自己的学习过程,也方便与大家做交流.转载请注明来自: http://blog.csdn.net/ab198604/article/details/8250461 要想深入的学习hadoop数据分析技术,首要的任务是必须要将hadoop集群环境搭建起来,可以将hadoop简化地想象成一个小软件,通过在各个物理节点上安装这个小软件,然后将其运行起来,就是一个hadoop分布式集群了. 说来简单,但是应该怎么做呢?不急,本文的主要目的就是让新手看了之后也能够亲自动手实施这些…
1. 介绍 YARN(Yet Another Resource Negotiator)是一个通用的资源管理平台,可为各类计算框架提供资源的管理和调度. 之前有提到过,Yarn主要是为了减轻Hadoop1中JobTracker的负担,对其进行了解耦.现在通常都会使用Hadoop Yarn,因为其稳定性更加优秀,YARN是对Mapreduce V1重构得到的,有时候也称为MapReduce V2. 2. YARN体系架构 首先,整个Hadoop Yarn和Hadoop1一样,也是建立在hdfs分布式…
一.日志数据分析1.背景1.1 ***论坛日志,数据分为两部分组成,原来是一个大文件,是56GB:以后每天生成一个文件,大约是150-200MB之间: 每行记录有5部分组成:1.访问ip:2.访问时间:3.访问资源:4.访问状态:5.本次流量 1.2 日志格式是apache common日志格式:1.3 分析一些核心指标,供运营决策者使用: 1.3.1 浏览量PV 定义:页面浏览量即为PV(Page View),是指所有用户浏览页面的总和,一个独立用户每打开一个页面就被记录1 次.分析:网站总浏…
建立一个伪分布式Hadoop周围环境 1.主办(Windows)顾客(安装在虚拟机Linux)网络连接. a) Host-only 主机和独立客户端联网: 好处:网络隔离: 坏处:虚拟机和其他server之间不能通讯: b) Bridge 桥接 宿主机与客户机在同一个局域网中. 优点:窦在同一个局域网,能够互相訪问: 坏处:不全然. 2.Hadoop的为分布式安装步骤 a) 设置静态IP 在centos下左面上右上角图标右键改动: 重新启动网卡service network restart; 验…
一.大数据的基本概念 1.1.什么是大数据 大数据指的就是要处理的数据是TB级别以上的数据.大数据是以TB级别起步的.在计算机当中,存放到硬盘上面的文件都会占用一定的存储空间,例如: 文件占用的存储空间代表的就是该文件的大小,在计算机当中,文件的大小可以采用以下单位来表示,各个单位之间的转换关系如下: 平时我们在我们自己的电脑上面常见的就是Byte.KB.MB.GB这几种,那么究竟什么是大数据呢,大数据的起步是以TB级别开始的,1TB=1024GB,而我们处理的数据可能会到达PB级别,1PB=1…
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”执行 “ 简单的任务”有几个含义: 1 数据或计算规模相对于原任务要大大缩小: 2 就近计算,即会被分配到存放了所需数据的节点进行计算: 3 这些小任务可以并行计算,彼此间几乎没有依赖关系 一个HDFS block (input split)执行一个Map task. Map tas…
一.Hadoop的发展历史 说到Hadoop的起源,不得不说到一个传奇的IT公司—全球IT技术的引领者Google.Google(自称)为云计算概念的提出者,在自身多年的搜索引擎业务中构建了突破性的GFS(Google File System),从此文件系统进入分布式时代.除此之外,Google在GFS上如何快速分析和处理数据方面开创了MapReduce并行计算框架,让以往的高端服务器计算变为廉价的x86集群计算,也让许多互联网公司能够从IOE(IBM小型机.Oracle数据库以及EMC存储)中…
一.概念 Hadoop是一个能够对大量数据进行分布式处理的软件框架,充分利用集群的威力进行高速运算和存储. 二.主要模块Hadoop Common:支持其他Hadoop模块的常用实用程序.Hadoop分布式文件系统(HDFS™):一种分布式文件系统,可提供对应用程序数据的高吞吐量访问.Hadoop YARN:作业调度和集群资源管理的框架.Hadoop MapReduce:基于YARN的系统,用于并行处理大型数据集.Hadoop Ozone: Hadoop的对象存储. Hadoop的框架最核心的设…
本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整个硬盘的容量的文件,这时需要将文件分割为若干较小的块,然后将这些块按照一定的规则分放在集群中若干台节点计算机里. 分布式文件系统的另一个作用是加速运算,在多台计算机上对每个子文件进行计算最后再汇总结果通常比在一台计算机上处理大量文件的运算要块.这种分而治之的思想倡导:与其追求造价昂贵的高性能计算机,…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成,而这就是Hadoop FS Shell.它主要是用于对Hadoop平台进行文件系统的管理. 有关HDFS的介绍博客请移步:Hadoop学习笔记之Hadoop基础. 有关Hadoop FS Shell的学习文档:Hadoop FS Shell学习文档. 2. Hadoop Streaming 我们知…
Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘.开源界及厂商,所有数据软件,无一不向Ha…
在Hadoop1(版本<=0.22)中,由于NameNode和JobTracker存在单点中,这制约了hadoop的发展,当集群规模超过2000台时,NameNode和JobTracker已经不堪重负.于是,全新架构的hadoop2(版本>=0.23)诞生了,可以支持分布式NameNode.NameNode HA(NameNode High Available),实现了NameNode的横向扩展,使得集群规模最大可支持上万个节点. 一.Hadoop2介绍 1.Hadoop1局限性  NameN…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
配置系统是复杂软件必不可少的一部分,而Hadoop配置信息处理是学习Hadoop源代码的一个很好的起点.现在就从Hadoop的配置文件谈起. 一.Hadoop配置格式 Hadoop配置文件格式如下所示: <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <pro…
前言 本人是由java后端转型大数据方向,目前也有近一年半时间了,不过我平时的开发平台是阿里云的Maxcompute,通过这么长时间的开发,对数据仓库也有了一定的理解,ETL这些经验还算比较丰富.但是由于Maxcompute是一个更简单的大数据开发平台,导致个人在分布式计算的底层一些知识比较薄弱,所以这次决定花几个月时间好好学习一下hadoop,后续当然也会开始spark的学习.个人感觉这块学习的东西还是比较多,同时也要不断的实践的,所以这趟学习之旅,希望能够记录自己的一些心得体会,供自己参考,…
关于大数据,一看就懂,一懂就懵. 一.概述 本文介绍如何搭建hadoop分布式集群环境,前面文章已经介绍了如何搭建hadoop单机环境和伪分布式环境,如需要,请参看:大数据Hadoop学习之搭建hadoop平台(2.1).hadoop独立环境和伪分布式环境都无法发挥hadoop的价值,若想利用hadoop进行一些有价值的工作,必须搭建hadoop分布式集群环境. 下文以三台虚拟机为基础搭建集群环境,系统版本为CentOS-7,虚拟机地址分别为:192.168.1.106.192.168.1.10…
 关于大数据,一看就懂,一懂就懵. 一.简介 Hadoop的平台搭建,设置为三种搭建方式,第一种是"单节点安装",这种安装方式最为简单,但是并没有展示出Hadoop的技术优势,适合初学者快速搭建:第二种是"伪分布式安装",这种安装方式安装了Hadoop的核心组件,但是并没有真正展示出Hadoop的技术优势,不适用于开发,适合学习:第三种是"全分布式安装",也叫做"分布式安装",这种安装方式安装了Hadoop的所有功能,适用于开…
关于大数据,一看就懂,一懂就懵. 大数据的发展也有些年头了,如今正走在风口浪尖上,作为小白,我也来凑一份热闹. 大数据经过多年的发展,有着不同的实现方案和分支,不过,要说大数据实现方案中的翘楚,那就是Hadoop了,因其开源.稳定等因素,受到了业界的承认和欢迎,那我们就来窥视一下Hadoop. 一.什么是Hadoop? 1. Hadoop是Apache软件基金组织的一个顶级项目,是开发可靠.可扩展.分布式计算的开源软件. Apache Hadoop软件库是一个框架,允许在使用简单编程模型的计算机…
大数据实时计算工程师/Hadoop工程师/数据分析师职业路线图 描述 本路线图是一个专门针对大数据实时处理.Hadoop工程师和数据分析师所设计的课程体系介绍,在实时计算方向主要包括了从数据收集框架.集群协调框架.数据缓存框架到实时计算框架都全面进行深度解析,让一个普通的开发人员迅速成为实时计算领域的领跑者.也从整体架构上给出了一个实时计算可以践行的基础架构和实时业务处理方法:在离线计算方面主要涉及集群调度框架.Hadoop框架.Hive框架.Hbase框架的全面深入的讲解,涉及的课时都比较长,…
起因 因为工作需要用到,所以需要学习hadoop,所以记录这篇文章,主要分享自己快速搭建hadoop环境与运行一个demo 搭建环境 网上搭建hadoop环境的例子我看蛮多的.但是我看都比较复杂,要求安装java,hadoop,然后各种设置..很多参数变量都不明白是啥意思...我的目标很简单,首先应该是用最简单的方法搭建好一个环境.各种变量呀参数呀这些我觉得一开始对我都不太重要..我只要能跑起来1个自己的简单demo就行.而且现实中基本上环境也不会让我来维护..所以对我来说简单就行. 刚好最近我…
Hadoop学习笔记系列   一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Had…
大数据介绍 大数据本质也是数据,但是又有了新的特征,包括数据来源广.数据格式多样化(结构化数据.非结构化数据.Excel文件.文本文件等).数据量大(最少也是TB级别的.甚至可能是PB级别).数据增长速度快等. 针对以上主要的4个特征我们需要考虑以下问题: 数据来源广,该如何采集汇总?,对应出现了Sqoop,Cammel,Datax等工具. 数据采集之后,该如何存储?,对应出现了GFS,HDFS,TFS等分布式文件存储系统. 由于数据增长速度快,数据存储就必须可以水平扩展. 数据存储之后,该如何…
要想深入学习Hadoop分布式文件系统,首先需要搭建Hadoop的实验环境,Hadoop有两种安装模式,即单节点集群模式安装(也称为伪分布式)和完全分布式模式安装,本节只介绍单节点模式的安装,参考官方文档: http://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/SingleCluster.html 由于Hadoop是运行在Linux/Unix平台,如果读者使用的是Windows操作系统,需要在虚拟机中搭建Li…
hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式文件系统? 管理网络中跨多台计算机存储的文件系统称为分布式文件系统. 2.为什么需要分布式文件系统了? 原因很简单,当数据集的大小超过一台独立物理计算机的存储能力时候,就有必要对它进行分区(partition)并存储到若干台单独计算机上. 3.分布式系统比传统的文件的系统更加复杂 因为分布式文件系统…
apache  hadoop三种架构介绍(standAlone,伪分布,分布式环境介绍以及安装) hadoop 文档 http://hadoop.apache.org/docs/ 1.StandAlone环境搭建 运行服务 服务器IP NameNode 192.168.221.100 SecondaryNameNode 192.168.221.100 DataNode 192.168.221.100 ResourceManager 192.168.221.100 NodeManager 192.…
Hadoop简介和历史 Hadoop架构体系 Master和Slave节点 数据分析面临的问题和Hadoop思想 由于工作原因,必须学习和深入一下Hadoop,特此记录笔记. 什么是hadoop? Apache Hadoop是一款支持数据密集型分布式应用并以Apache 2.0许可协议发布的开源软件框架.它支持在商品硬件构建的大型集群上运行的应用程序.Hadoop是根据Google公司发表的MapReduce和Google档案系统的论文自行实作而成. Hadoop框架透明地为应用提供可靠性和数据…