P3489 付公主的背包】的更多相关文章

题意:n<=1e5,m<=1e5,跑n个物品1到m容量的完全背包. 考虑暴力的做法就是把一些1/(1+x^a)的多项式乘起来即可. 考虑优化,取一下ln,转化为加法,然后exp回去就好了.…
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\(10^5\)件 给定\(m\),对于\(s\in [1,m]\),请你回答用这些商品恰好装\(s\)体积的方案数 输入输出格式 输入格式: 第一行\(n,m\) 第二行\(V_1\sim V_n\) 输出格式: \(m\)行,第\(i\)行代表\(s=i\)时方案数,对\(998244353\)取…
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m]s∈[1,m],请你回答用这些商品恰好装s体积的方案数 输入输出格式 输入格式: 第一行n,m 第二行V1~Vn 输出格式: m行,第i行代表s=i时方案数,对998244353取模 输入输出样例 输入样例#1: 2 4 1 2 输出样例#1: 1 2 2 3 说明 对于30%的数据,n<=300…
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\)的物品: \[f(x)=1+x^v+x^{2v}+\cdots +x^{kv}+\cdots \] 那么答案\(F(x)\)就是每个物品的\(f\)卷起来: \[F(x)=\prod\limits_{i=1}^{n}f_i(x)=\prod\limits_{i=1}^{n}\frac{1}{1-x^…
传送门 神仙题鸭!orz dkw 暴力就是完全背包 而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{a_ij}\),最后体积为i的答案即为这n个生成函数的卷积的第i项系数 然而用卷积复杂度为\(O(mnlogm)\),还不如暴力.说道卷积,我就想起了可以把多项式先求\(ln\),然后加起来,最后求\(exp\).只不过每个函数求\(ln\)复杂度还是不行,我们打表发现\(lnG(i)=\sum_{…
题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题,看到数据范围就知道是生成函数.$$Ans=\prod_{i=1}^n\frac{1}{1-x^{v_i}}$$ 但是这个式子直接乘会tle,我们考虑进行优化. 看见这个连乘的式子,应该是要上$\ln$. $$Ans=\exp(\sum_{i=1}^n\ln(\frac{1}{1-x^{v_i}})…
题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i\) 的背包的方案数,两个方案不同当且仅当存在某一个物品的选取数量不同. 你需要对 \(i\in [1,m]\) 回答,答案对 \(998,244,353\) 取模. 题解: 对于一个体积为 \(v\) 的物品,它装满容量为 \(x\) 的背包的方案数序列为 \(a_x=[v|x]\). 例如 \(…
完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是答案就是$\prod \frac{1}{1-x^{V_k}}$.直接做显然会超时,考虑使用ln将乘法变为加法.https://www.cnblogs.com/cjyyb/p/10132855.html #include<cmath> #include<cstdio> #include&…
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{1}{1-x^v}\\ ans=\prod_{i=1}^{n}\frac{1}{1-x^{v_i}} \] 然而这样直接乘起来复杂度是\(O(mn\ log\ n)\) 然后套路,左右套上\(ln\)就可以化乘为加 \[ ln\ ans=\sum_{i=1}^{n}ln\ \frac{1}{1-x^…
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = {1 \over {1 - x ^ V}}\) 那么就是求这个生成函数的积. 首先将\(f(x)\)取\(ln\)为\(g(x)\),最后\(exp\)回去得到答案. \(g'(x) = {f'(x) \over f(x)} = (1 - x^V)\sum_{i = 1}^{oo}V * i *…