1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_…
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编程环境解决方案.这里我们在线性拟合的基础上,再介绍一下MindSpore中使用线性神经网络来拟合多变量非线性函数的解决方案. 环境配置 在按照这篇博客中的方法进行安装和配置之后,可以在本地的docker镜像仓库中找到一个mindspore的镜像: [dechin-manjaro gitlab]# d…
本实验通过建立一个含有两个隐含层的BP神经网络,拟合具有二次函数非线性关系的方程,并通过可视化展现学习到的拟合曲线,同时随机给定输入值,输出预测值,最后给出一些关键的提示. 源代码如下: # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plotdata = { "batchsize":[], "loss":[] } d…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…
突然有个想法,能否通过学习一阶RC电路的阶跃响应得到RC电路的结构特征——时间常数τ(即R*C).回答无疑是肯定的,但问题是怎样通过最小二乘法.正规方程,以更多的采样点数来降低信号采集噪声对τ估计值的影响.另外,由于最近在捣鼓Jupyter和numpy这些东西,正好尝试不用matlab而用Jupyter试试看.结果是意外的好用,尤其是在Jupyter脚本中插入LaTeX格式的公式的功能,真是太方便了!尝试了直接把纸上手写的公式转换到Jupyter脚本中的常见工具软件. 以下原创内容欢迎网友转载,…
原文:利用最小二乘法拟合任意次函数曲线(C#) ///<summary>     ///用最小二乘法拟合二元多次曲线     ///</summary>     ///<param name="arrX">已知点的x坐标集合</param> ///<param name="arrY">已知点的y坐标集合</param> ///<param name="length"&g…
7.1 案例背景 7.1.1 RBF神经网络概述 径向基函数是多维空间插值的传统技术,RBF神经网络属于前向神经网络类型,网络的结构与多层前向网络类似,是一种三层的前向网络.第一层为输入层,由信号源结点组成:第二层为隐藏层,隐藏层节点数视所描述问题的需要而定,隐藏层中神经元的变换函数即径向基函数是对中心点径向对称且衰减的非负非线性函数,该函数是局部响应函数,而以前的前向网络变换函数都是全局响应的函数:第三层为输出层,它对输入模式作出响应.RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐藏…
4.1 案例背景 \[y = {x_1}^2 + {x_2}^2\] 4.2 模型建立 神经网络训练拟合根据寻优函数的特点构建合适的BP神经网络,用非线性函数的输入输出数据训练BP神经网络,训练后的BP神经网络就可以预测函数输出.遗传算法极值寻优把训练后的 BP 神经网络预测结果作为个体适应度值,通过选择.交叉和变异操作寻找函数的全局最优值及对应输入值. 网络结构:2-5-1 训练数据:3900,测试数据:100 4.3 编程实现 %% 基于神经网络遗传算法的系统极值寻优 %% 清空环境变量 c…