Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP (反向传播算法) 关于梯度下降的东西,涉及的知识很多,有必要单独一章 Lecture 06 —— mini批量梯度训练及三个加速的方法 (详见链接) 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降(SGD)学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 补充: 参见cs231n 2017版本,ppt写得比过去更好. [译] 理解 LSTM 网络:模块内部解析讲得不错. Lecture 07 Lecture 08 完全递归网络(Fully recurrent network) Hopfield网络(Hopfield network) Elman networks and Jordan network…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Lecture 09 Lecture 10 提高泛化能力 介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过提早结束训练来控制网络能力(其实就是防止过拟合)的例子. 所以我们需要方法来阻止过拟合, 第一个方法也是目前最好的方法:就是简单的增加更多的数据,如果你能提供更多的数据,那么就不需要去提…
Lecture 11 — Hopfield Nets Lecture 12 — Boltzmann machine learning Ref: 能量模型(EBM).限制波尔兹曼机(RBM) 高大上的模型和理论. Hopfield Nets 看了能量函数,发现: These look very much like the weights and biases of a neural network. [点到为止] Boltzmann machine learning From: A Beginne…
机器学习能良好解决的问题 识别模式 识别异常 预測 大脑工作模式 人类有个神经元,每一个包括个权重,带宽要远好于工作站. 神经元的不同类型 Linear (线性)神经元  Binary threshold (二值)神经元  watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300&quo…
一种能够学习家谱关系的简单神经网络 血缘一共同拥有12种关系: son, daughter, nephew, niece, father, mother, uncle, aunt, brother, sister, husband, wife 有1个英国家庭以及1个意大利家庭,每一个家庭有12个人. 各种家庭关系都是可用三元数组表示.即( Agent / Relation / Patient ) 结构: (colin has-father james) (colin has-mother vic…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Coursera which is moderated by moderated by DeepLearning.ai. The course is taught by Andrew Ng. Introduction to deep learning Be able to explain the maj…
最近花了半个多月把Mchiael Nielsen所写的Neural Networks and Deep Learning这本书看了一遍,受益匪浅. 该书英文原版地址地址:http://neuralnetworksanddeeplearning.com/ 回顾一下这本书主要讲的内容 1.使用神经网络识别手写数字 作者从感知器模型引申到S型神经元.然后再到神经网络的结构.并用一个三层神经网络结构来进行手写数字识别, 作者详细介绍了神经网络学习所使用到梯度下降法,由于当训练输入数量过大时,学习过程将变…