G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组(u,v,s)表示u到v的(不一定为简单路径)路径上xor值为s.求出这张无向图所有不重复三元组的s之和.1≤n≤10^5,1≤m≤2*10^5. 想法: 如果做过[Wc2011 xor]这道题目(题解),那么问题变得简单起来了. ①假设我们钦定一个(u,v),设任意一条u->v的路径xor值为X,…
G. Xor-matic Number of the Graph 链接 题意: 给定一个无向图,一个interesting的三元环(u,v,s)满足,从u到v的路径上的异或和等于s,三元环的权值为s,求所有三元环权值之和. 分析: 求出所有的三元环,建立线性基,然后逐位求每一位的贡献. 代码: #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include&…
G - Xor-matic Number of the Graph 上一道题的加强版本,对于每个联通块需要按位算贡献. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define PLI pair<LL, int> #define ull unsigned lo…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! 题目链接:codeforces724G 正解:线性基解题报告: 一道线性基好题… 是不是感觉和$WC2011$的那道题有相通之处呢?首先搞出一棵$dfs$树,并且得到树上每个环的$xor$值. 我们发现,两点间就是本来的$dis$ $xor$ 某些环的$x…
两点之间的任意路径都可表示为  随便某一条路径xor任何多个环, 然后可以用线性基来做,这样不会重复的, 另外必须一位一位的处理,xor是不满足结合律的 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<vector> #define MOD 1000000007 #define MAXN 100000+10 #define ll l…
Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically(意思是,如果仅仅是斜角都为1,不是ajacent land). You may assume all four edges of…
题目链接 \(Description\) 给定一张带边权无向图.若存在u->v的一条路径使得经过边的边权异或和为s(边权计算多次),则称(u,v,s)为interesting triple(注意是三元组,不是两元组). 求图中所有interesting triple中s的和. \(Solution\) 同[WC2011]Xor,任意两点路径的Xor和是它们间(任意一条)简单路径的和Xor一些环的和.so可以先处理出环上的和,构造线性基.两点间的一条简单路径可以直接求个到根节点的dis[]. 有了…
题目描述 给你一个无向图,有n个顶点和m条边,每条边上都有一个非负权值. 我们称一个三元组(u,v,s)是有趣的,当且仅当对于u,v,有一条从u到v的路径(可以经过相同的点和边多次),其路径上的权值异或和为 s .对于一条路径,如果一条边经过了多次,则计算异或和时也应计算多次.不难证明,这样的三元组是有限的. 计算所有有趣的三元组中s的和对于1e9+7的模数 题解 不知道线性基是什么东西的可以看看蒟蒻的总结 线性基神仙题 首先异或和肯定得用线性基 然后路径肯定得找出所有环 那么先dfs一遍,找出…
题意 求所有点对\(u,v\),\(u\)到\(v\)所有不同的异或路径的异或值之和,对\(10^9+7\)取模 题解 求出一个dfs树,那么\(u\)到\(v\)的路径一定是树上路径异或一些环.这些环只可能是返祖边构成的,我们把所有环存到线性基里. 先把每一位拆开,答案变为:\(\sum_{i = 0}^{60} 2^i f(i)\),其中\(f(i)\)表示所有满足要求的路径中,第\(i\)位是\(1\)的路径个数 考虑\(f(i)\)怎么求.枚举\(u\)和\(v\),我们假设dfs的时候…
题目就不翻译了吧,应该写的很清楚了... 首先 \(,\) 不懂线性基的可以戳这里.知道了线性基\(,\) 但是从来没有写过线性基和图论相结合的\(,\) 可以戳这里. 好\(,\) 点完了这些前置技能之后,我们就可以来愉快的切题啦! 正片\(:\) 类比\([WC\) \(2011]\) 最大\(xor\)和路径\(,\) 我们肯定要找环\(,\) 找完环后再用环去构造线性基\(,\) 因为还是那句话嘛\(:\) 任何一条复杂路径\(,\) 都能有起始两点的一条简单路径再加上若干个环组成. 那…