目前最好的高动态范围(HDR)成像方法通常是先利用光流将输入图像对齐,随后再合成 HDR 图像.然而由于输入图像存在遮挡和较大运动,这种方法生成的图像仍然有很多缺陷.最近,腾讯优图和香港科技大学的研究者提出了一种基于深度学习的非光流 HDR 成像方法,能够克服动态场景下的大范围前景运动. 论文:Deep High Dynamic Range Imaging with Large Foreground Motions 论文链接:https://arxiv.org/abs/1711.08937 摘要…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
利用RGB-D数据进行人体检测 LucianoSpinello, Kai O. Arras 摘要 人体检测是机器人和智能系统中的重要问题.之前的研究工作使用摄像机和2D或3D测距器.本文中我们提出一种新的使用RGB-D的人体检测方法.我们从HOG( Histogram of OrientedGradients)描述子获得灵感,设计了一个在稠密深度数据中检测人体的方法,叫做深度方向直方图HOD(Histogram of Oriented Depths).HOD对局部深度变化的方向进行编码,依靠在预…
人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:https://arxiv.org/pdf/1912.05656.pdf Code and pretrained models are available at: https://github.com/mkocabas/VIBE 摘要 人体运动是理解行为的基础.尽管在单图像三维位姿和形状估计方面取得了进展,…