欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractionally strided convolutions. 根据<A guide to convolution arithmetic for deep learning>的介绍的话,在进行卷积操作的时候我们是可以把卷积操作重写为以下的形式: 这个时候,输出是可以表示为 如果反向操作,输入为y的话,要得…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
在传统的神经网络中,比如多层感知机(MLP),其输入通常是一个特征向量.需要人工设计特征,然后将用这些特征计算的值组成特征向量.在过去几十年的经验来看,人工找的特征并不总是好用.有时多了,有时少了,有时选的特征根本就不起作用(真正起作用的特征在浩瀚的未知里).这就是为啥过去几十年神经网络一直被SVM等完虐的原因. 如果有人说,任何特征都是从图像中提取的.那如果把整幅图像作为特征来训练神经网络不就行了嘛,那肯定不会有任何的信息丢失!额,先不说一幅图像有多少冗余信息,单说这数据量就,吓死了! 假如有…
content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列…
一幅图像里包含三个通道,分别是RGB通道.三通道在卷积时是通过累加三个卷积结果得到的. CNN中全连接层的卷积核大小是feature map的大小.比如feature是3*3的,那么该全连接层的卷积核大小为3*3的. FCN中是把CNN上最后的三层全连接层换成了全卷积层.这两者的区别其实是卷积核的大小不同.输出的feature map 不再是1*1的大小. 以下是我自己写的例子,给大家参考,如有错误欢迎指出.…
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 一.卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在AlexN…
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d https://www.cnblogs.com/chuantingSDU/p/8120065.html https://blog.csdn.net/chaolei3/article/details/79374563 1x1…