C#集成ViewFaceCore人脸检测识别库】的更多相关文章

Emgu cv人脸检测识别 1.开发平台:WIN10 X64    VS2012    Emgucv版本:3.1 2.先给大家分享一个官网给的示例源代码: https://ncu.dl.sourceforge.net/project/emgufacerecog/Face%20Recognition%202.4.9.zip 3.部分代码展示: [打开摄像头:] using System; using System.Collections.Generic; using System.Linq; us…
前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现: # -*- coding: utf-8 -*- __author__ = "小柒" __blog__ = "https://blog.52itstyle.vip/" import cv2 i…
前言 随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付.银行身份验证.手机人脸解锁等等. 识别 废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出. 代码实现: # -*-coding:utf8-*-# import os import cv2 from PIL import Image, ImageDraw from…
  AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法——Haar-like矩形特征   矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组…
论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https://arxiv.org/abs/1604.02878 官方代码链接:https://github.com/kpzhang93/MTCNN_face_detection_alignment 其他代码实现(MXNet):https://github.com/pangyupo/mxnet_mtcnn_face…
案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现:   动图有点花,讲究着看吧:   如果是捕捉摄像头,只需要改变以下代码即可: cap = cv2.VideoCapture(0)…
百度网盘地址 微云地址 使用虹软人工智能开放平台技术开发完成…
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸检测——OpenCV版(三)> dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 人脸的68个特征点 安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本…
人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码,想要自己训练一下模型那可就犯难了. 虽然可以阅读源码,从前向传播的角度,反过来实现训练代码, 但是谁有那个闲功夫和时间,去折腾这个呢? 有的时候还是要站在巨人的肩膀上,你才能看得更远. 而SeetaFace 不算巨人,只是当年风口上的猪罢了. 前年,为了做一个人脸项目,也是看遍了网上各种项目. 林林…
0. 引言 利用 Python 开发,借助 Dlib 库进行人脸检测 / face detection 和剪切:   1. crop_faces_show.py : 将检测到的人脸剪切下来,依次排序平铺显示在新的图像上: 实现的效果如 图1 所示,将 图1 原图中的 6 张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 2. crop_faces_save.py : 将检测到的人脸存储为单个人脸图像: 图 1 原图 和 crop_faces_show.py 处理后得到的平铺人脸图像窗…