4.3 等比数列及其前n项和】的更多相关文章

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13959   Accepted: 3433 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99…
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   当中pi均为素数 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的全部因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1…
相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right.\) ③\(1+2+3+\cdots+ n=\cfrac{n(n+1)}{2}\): ④\(1+3+5+\…
一.方法依据: 已知数列\(\{a_n\}\)是等差数列,首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\),则求\(S_n\)的最值常用方法有两种: (1).函数法:由于\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)}{2}d=\cfrac{d}{2}n^2+(a_1-\cfrac{d}{2})n\), 令\(A=\cfrac{d}{2}\),\(B=a_1-\cfrac{d}{2}\),则\(S_n=An^2+Bn\), 即…
等差数列 等比数列 常见的前n项和…
A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l…
求分数序列前N项和 #include <stdio.h> int main() { int i, n; double numerator, denominator, item, sum, swap; while (scanf("%d", &n) != EOF) { numerator = 2; denominator = 1; item = 0; sum = 0; for (i = 1; i <= n; i++) { item = numerator/deno…
求阶乘序列前N项和 #include <stdio.h> double fact(int n); int main() { int i, n; double item, sum; while (scanf("%d", &n) != EOF) { sum = 0; if (n <= 12) { for (i = 1; i <= n; i++) { item = fact(i); sum = sum + item; } } printf("%.0f…
求平方根序列前N项和 #include <stdio.h> #include <math.h> int main() { int i, n; double item, sum; while (scanf("%d", &n) != EOF) { sum = 0; for (i = 1; i <= n; i++) { item = sqrt(i); sum = sum+item; } printf("sum = %.2f\n", s…
求交错序列前N项和 #include <stdio.h> int main() { int numerator, denominator, flag, i, n; double item, sum; while (scanf("%d", &n) != EOF) { flag = 1; numerator = 1; denominator = 1; sum = 0; for (i = 1; i <= n; i++) { item = flag*1.0*numer…