定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个节点跟踪"平衡因子balance factor"参数 \(balance Factor=height (left SubTree)-height(right SubTree)\) 平衡因子大于0,称为"左重left-heavy", 小于零称为"右重right-…
接着第三课的内容和讲了第四课的部分内容 1.介绍二叉搜索树 在二叉树上,何为一个节点的后继节点? 何为搜索二叉树? 如何实现搜索二叉树的查找?插入?删除? 二叉树的概念上衍生出的. 任何一个节点,左比他小,右比他大.标准搜索二叉树是没有重复值的. TreeMap就是搜索二叉树,key是有序组织起来的,组织方式是搜索二叉树,具体就是红黑树(具有某一种平衡性的搜索二叉树),和HashMap的无序分布不同. 有序的话,能完成更多的事情,找刚刚小的.刚刚大的. 查数很方便,如果左子树和右子树高度差不超过…
1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要插入的值比节点的值小,则向节点的左子树遍历,大于等于则向右子树遍历,如此循环. 1.3删除节点 删除节点x有3种情况: 1.x是叶子结点,则直接删除: 2.x只有一棵子树(左子树或者右子树),则直接将x的父结点指向x的孩子,再删除x节点,如果x是根结点,则要更新x的孩子为树根: 3.x有两棵子树,则…
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表.从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数. 而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn). AVL的特性 在讨论AVL的特性之前,我们先介绍一个概念叫做平…
上一篇实现了二叉搜索树,本章对二叉搜索树进行改造使之成为平衡二叉搜索树(Balanced Binary Search Tree). 不平衡的二叉搜索树在极端情况下很容易退变成链表,与新增/删除/查找时间复杂度为O(logN)的目标又远了一步. 平衡二叉搜索树始终围绕O(logN)这个目标来构建数据结构. 节点类和实现类: /** * 二叉搜索树节点&平衡二叉搜索树添加节点时自平衡实现 */ public class Node { private int data;//数据域 private No…
背景 很多场景下都需要将元素存储到已排序的集合中.用数组来存储,搜索效率非常高: O(log n),但是插入效率比较低:O(n).用链表来存储,插入效率和搜索效率都比较低:O(n).如何能提供插入和搜索效率呢?这就是二叉搜索树的由来,本文先介绍非平衡二叉搜索树. 非平衡二叉搜索树 规则 所有节点的左节点小于节点,所有节点的右节点大于等于自身,即:node.value >  node.left.value && node.value <= node.right.value. 示例…
前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节: AVL树实现的关键点 AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡,实现AVL树关键在于标注节点高度.计算平衡因子.维护左右子树平衡这三点,下面分别介绍: 标注节点高度 从上面AVL树的定义中我们知道AVL树其左右节点高度差不能超过一,所以我们需要标注出每个节点高度: 1.节点高度为最大的子节点高度加1,其中叶子节点高度为1: 2.1与4叶子节点高度为1,节点3高度…
手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索树,顾名思义,它的搜索效率很高,可以达到O(logn).但这是理想状况下的,即上图所示.实际上,由于插入顺序的原因,形成的二叉搜索树并不会像上图这样"工整",最坏的情况的下,甚至可能会退化成链表了,如下图: 这显然不是我们想要看的结果,那么我们必须要引入一套机制来避免这种事情的发生,也就是…
1.二叉搜索树介绍 前面我们已经介绍过了向量和链表.有序向量可以以二分查找的方式高效的查找特定元素,而缺点是插入删除的效率较低(需要整体移动内部元素):链表的优点在于插入,删除元素时效率较高,但由于不支持随机访问,特定元素的查找效率为线性复杂度O(1),效率较低. 向量和链表的优缺点是互补的,那么有没有办法兼具两者的优点呢?这便引出了接下来需要介绍的数据结构——二叉搜索树(Binary Search Tree). 二叉搜索树和链表类似,同样是以节点为单位存储数据的链式数据结构.二叉搜索树作为一种…
第108题 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0,5,9], 一个可能的答案是:[0,-3,9,-10,null,5],它可以表示下面这个高度平衡二叉搜索树: 0 / \ -3 9 / / -10 5 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/convert-sorted-a…