一.序言 Caffeine是一个进程内部缓存框架,使用了Java 8最新的[StampedLock]乐观锁技术,极大提高缓存并发吞吐量,一个高性能的 Java 缓存库,被称为最快缓存. 二.缓存简介 (一)缓存对比 从横向对常用的缓存进行对比,有助于加深对缓存的理解,有助于提高技术选型的合理性.下面对比三种常用缓存:Redis.EhCache.Caffeine. 1.序列化 缓存 序列化 原因 Redis 必须实现序列化 进程间数据传输,因此必须实现序列化.大多数情况下涉及内网网络传输:作为缓存…
Caffeine是一种高性能的缓存库,是基于Java 8的最佳(最优)缓存框架. Cache(缓存),基于Google Guava,Caffeine提供一个内存缓存,大大改善了设计Guava's cache 和 ConcurrentLinkedHashMap 的体验. 1 LoadingCache<Key, Graph> graphs = Caffeine.newBuilder() 2 .maximumSize(10_000) 3 .expireAfterWrite(5, TimeUnit.M…
它提供了一个近乎最佳的命中率.从性能上秒杀其他一堆进程内缓存框架,Spring5更是为了它放弃了使用多年的GuavaCache 缓存,在我们的日常开发中用的非常多,是我们应对各种性能问题支持高并发的一大利器.我们熟知的缓存有堆缓存(Ehcache3.x.Guava Cache等).堆外缓存(Ehcache3.x.MapDB等).分布式缓存(Redis. memcached等)等等.今天要上场的主角是Caffeine,它其实是Google基于Java8对GuavaCache的重写升级版本,支持丰富…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由columneditor 发表于云+社区专栏 作者介绍:章恒--腾讯云FPGA专家,目前在腾讯架构平台部负责FPGA云的研发工作,探索FPGA加速数据中心的应用,包括:图像处理.深度学习.SDN等. 为了进一步加速云计算的创新发展.建立云计算信任体系.规范云计算行业.促进市场发展.提升产业技术和服务水平,由中国信息通信研究院.中国通信标准化协会主办的"2018可信云大会"于2018年8月14日-8月15日在北京国际会议中…
在高性能网络的场景下,C10K是一个具有里程碑意义的场景,15年前它给互联网领域带来了非常大的挑战.发展至今,我们已经进入C10M的场景进行网络性能优化. 这期间有怎样的发展和趋势?环绕着各类指标分别有哪些探索和实践? C10K时代的问题与优化手段 首先带大家回想一下当年C10K场景中遇到的问题以及为了解决我们单机下高并发的承载能力所做的改进.在当时的年代.国内互联网的普及程度相对较低,C10K并没有给当时中国的互联网环境带来太大冲击,可是在全球互联网环境下大家開始意识到这个问题.为了解决该问题…
1. 前言 高精地图(High Definition Map)作为自动驾驶安全性不可或缺的一部分,能有效强化自动驾驶的感知能力和决策能力,提升自动驾驶的等级.对于自动驾驶来说,高精地图主要是给机器用的,但是在制作和分析过程中依然需要人能够理解.本文将为大家简单介绍下,在过去的一段时间里高德高精地图业务团队,在WEB三维引擎技术方面的一些探索和实践,如何让复杂抽象的地理数据呈现在人们面前,满足其业务编辑和分析的诉求. 高精地图主要是对道路交通层对象(如:车道地面标线.交通灯.交通牌.防护栏.杆等)…
7 月 9 日,GOTC 2021 全球开源技术峰会上海站与 WAIC 世界人工智能大会共同举办,峰会聚焦 AI 与云原生两大以开源驱动的前沿技术领域,邀请国家级研究机构与顶级互联网公司的一线技术专家,为参会的开发者和技术爱好者带来了最硬的行业技术干货,提供了一个难得的技术交流平台. 在本次会议上,腾讯云高级工程师高策进行了题为"公有云上构建云原生 AI 平台的探索与实践"的技术分享,介绍了 AI 类业务在公有云上的现状以及相应的技术选型和面临的问题.最后通过分析开源社区和业界的趋势,…
在我们开发的很多分布式项目里面(如基于WCF服务.Web API服务方式),由于数据提供涉及到数据库的相关操作,如果客户端的并发数量超过一定的数量,那么数据库的请求处理则以爆发式增长,如果数据库服务器无法快速处理这些并发请求,那么将会增加客户端的请求时间,严重者可能导致数据库服务或者应用服务直接瘫痪.缓存方案就是为这个而诞生,随着缓存的引入,可以把数据库的IO耗时操作,转换为内存数据的快速响应操作,或者把整个页面缓存到缓存系统里面.缓存框架在各个平台里面都有很多的实现,基本上多数是采用分布式缓存…
在我们开发的很多分布式项目里面(如基于WCF服务.Web API服务方式),由于数据提供涉及到数据库的相关操作,如果客户端的并发数量超过一定的数量,那么数据库的请求处理则以爆发式增长,如果数据库服务器无法快速处理这些并发请求,那么将会增加客户端的请求时间,严重者可能导致数据库服务或者应用服务直接瘫痪.缓存方案就是为这个而诞生,随着缓存的引入,可以把数据库的IO耗时操作,转换为内存数据的快速响应操作,或者把整个页面缓存到缓存系统里面.缓存框架在各个平台里面都有很多的实现,基本上多数是采用分布式缓存…
在我们开发的很多分布式项目里面(如基于WCF服务.Web API服务方式),由于数据提供涉及到数据库的相关操作,如果客户端的并发数量超过一定的数量,那么数据库的请求处理则以爆发式增长,如果数据库服务器无法快速处理这些并发请求,那么将会增加客户端的请求时间,严重者可能导致数据库服务或者应用服务直接瘫痪.缓存方案就是为这个而诞生,随着缓存的引入,可以把数据库的IO耗时操作,转换为内存数据的快速响应操作,或者把整个页面缓存到缓存系统里面.缓存框架在各个平台里面都有很多的实现,基本上多数是采用分布式缓存…