6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前言 考试的时候用一个自己感觉非常妙的思路骗了20pts,因为是双向边,所以分成两个边存,边的tot从2开始,这样可以保证没一组边的序号通过取\(xor\)可以相互转化. 然后对于每一个边记录经过次数,并且记一下经过次数为1和2的边的总数,然后对于dfs时转移的就是状压的每组边的状态,当然也可以拿Hash存…
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a_i-\frac{(j-i)\times (j-i-1)}{2}]$ 设$j<k$,对$i$来说,$k$优于$j$,当且仅当$2\times i>\frac{2\times(f_j-f_k)+k^2+k-j^2-j}{k-j}$ 斜率优化,$CDQ$分治,先按$a$排序,分治中按$id$排序满足限…
开始给了一个简单的题目,但我还是没有珍惜. 一个简简单单的树形 \(dp\),然而因为取模却不知道该如何比较大小.. 其实可以取 \(log\),然后我就梦中惊坐起,然后想到了魔法少女lbw 淦 然后拿到了 \(15pts\). 然而太虚真人因为拍掉了魔法少女lbw,然后码了一个高精. 然后... 过了?! 好吧,还是 \(nb\) 卷 就是一个非常非常基础的树形 \(dp\) 用 \(f_{i,1/0} 来表示选择这个还是不选择这个\) 其实刚开始的时候会有一个非常 \(naive\) 的想法…
T1 星际旅行 其实就是求两条只走一遍的边的方案数. 考场上第一眼就感觉不可做,后来画了几个图,发现好像只要两个边是相连的就可以只走一遍,居然还真拿了30.. 其实是一道欧拉路的题,把每条非自环的边看作两条平行的边,问题就转变为了删掉两条边,使图变为欧拉图. 欧拉图存在的充要条件是图联通,且只有0或2个点的出度为奇数.因为把边一分为二,所以初始出度都为偶. 所以删两条相连的边是其中一种情况,30pts到手. 另外考虑自环,由于自环不计入出度,所以可以删掉两个自环或一个自环和任意一边. 注意在计算…
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[尴尬\(.jpg\)] \(T1\)P3322 [SDOI2015]排序 背景 说实话,看见这题正解是dfs的那一刻,我人都傻了[流泪.jpg] 在讲这题的时候赵队@yspm 类比了线段树的思想%%%%%,在食用本篇题解时可以想一下 解题思路 最基本的一个思想:结果与操作的顺序无关,因为在更换的时候…
5.22考试总结(NOIP模拟1) 改题记录 T1 序列 题解 暴力思路很好想,分数也很好想\(QAQ\) (反正我只拿了5pts) 正解的话: 先用欧拉筛把1-n的素数筛出来 void get_Prime() { for(int i=2;i<=M;i++) { if(!b[i]) pri[++tot]=i; for(int j=1;j<=tot&&i*pri[j]<=M;j++) { b[i*pri[j]]=true; if(!(i%pri[j])) break; }…
T1 卷 一看跟没有上司的舞会一样,直接敲了然后试个自己造的样例对了就跑了... 然而把它想简单了,乘积取模,还能比大小吗????? 显然不能 所以直接让对数的加和跟着$dp$直接一起跑,比大小的都用对数就行 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 inline int AE86(){ 5 int x=0,f=1; char ch=getchar(); 6 while(ch<'0…
因为考试过多,所以学校的博客就暂时咕掉了,放到家里来写 不过话说,vscode的markdown编辑器还是真的很好用 先把 \(noip\) 模拟 \(23\) 的总结写了吧.. 俗话说:"连胜之后必是连败,连败之后必是连胜". 经过之前连续五场比赛的挂分,终于回来了一点点... 菜我还是... 咱也不知道当时的零分是怎么考出来的.... \(\color{green}{\huge{\text{菜}}}\) ........ 好吧...... 每次考爆炸的时候在赛后总会发现自己的题目还…
T1 数列 考场上切掉的简单题. $a$,$b$与数列中数的正负值对答案无关.全当作正数计算即可. $exgcd$解未知数系数为$a$,$b$,加和为$gcd(a,b)$的不定方程组,再枚举每个数.如果不为$gcd(a,b)$倍数则无解,否则将解的绝对值加和调整至最小. 调整可以分类讨论,我写了不用动脑子的倍增. $code:$ 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 const in…
A. 卷 发现乘积足以爆 \(long\) \(long\),但是数据随机,可以略忽略精度问题 一个快速降低数的级别的方法是取对数,由于有性质 \(log(x * y)=logx+logy\),合并时运算会很方便,于是转化成加和型最大独立集问题 B. 简单题 观察发现对于每个奇数,其 \(2\) 倍放在另一个集合,\(4\) 倍放在当前集合,以此类推 那么对于一条偶数长度的链,一定一半放在第一个集合,另一半放在第二个集合,对答案贡献乘 \(2\) 对于奇数长度的链,一定分成 \(len\) 和…