P3225 [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口. 请写一个程序,用来计算至少需要设置几个救援出口,以及不同最少救援出口的设置方案总数. 点双入门... 话说题意是真的晦涩. 一眼求割点,求完割点怎么办? 因为我们把割点去掉之后,图中会剩下一个一个的块,这些块就…
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下: 行号 1 2 3 4 5 6 列号 2 4 6 1 3 5 这只是跳棋放置的一个解.请编一个程序找出所有跳棋放置的解.并把它们以上面的序列方法输出.解按字典顺序排列.请输出前3个解.最后一行是解的总个数.…
倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ]; void dfs(int x,int fa) { int i,k; vis[x]=; anc[x][]=fa; deep[x]=deep[fa]+; ;i<=log2n;i++) anc[x][i]=anc[anc[x][i-]][i-]; ;k=e[k].next) if(!vis[e[k].…
洛谷题目传送门 AC自动机入门--yyb巨佬的博客 AC自动机入手经典好题(虽然年代久远) 有了fail指针,trie树就不是原来的树型结构了,我们可以把它叫做trie图,由父节点向子节点连的边和fail代表的边构成(都是单向边). 最模板的AC自动机,就是直接匹配字符串.然而这题思维并非如此简单. 来一波逆向思维.假设我们构造出了一个无限长的安全代码,再拿到AC自动机上匹配,会发生什么? 没错,当我们一位一位地匹配的时候,我们会发现,永远都不会跳到某个病毒代码段结尾的位置(以后把这里称作危险节…
[洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边的数量. 求\(\sum_{l=1}^n\sum_{r=l}^nTree[l,r]\). 思路: 对于每个边考虑贡献,若我们将出现在子树内的点记作\(1\),出现在子树外的点记作\(0\),那么答案就是\(\frac{n(n-1)}2-\)全\(0\).全\(1\)串的个数.线段树合并,维护前缀/后…
洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不同树的影响. 假设有一个1操作形如\(l\ r\ x\),那么从微观来看差异,我们只关注第l-1棵树和第l棵树.再假设以后都没有了0操作,那么我们可以认为,第l棵树是第l-1棵树把这个1操作以后嫁接在原来生长节点上的所有节点(以及所有子树)全部转而嫁接到x上.再看第r棵树和第r+1棵树,是不是可以认…
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上差分的小套路--每一个点到根的前缀和还是很好维护对吧. 询问\(u,v\)的时候,我们可以知道\(size[root,u]\)和\(size[root,v]\)的和. 但我们需要的只是一条路径,\(lca(u,v)\)以上的全不要,\(lca(u,v)\)也只要算一次. 于是用\(size[root…
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(dp[x][i]\)表示在节点\(x\)保留\(i\)个边所获得的最大苹果数,定义状态时一定要选对状态并且定义清晰(状态中包括了当前节点吗?目标状态是怎样的?).一开始我就是因为状态定义错误,所以卡了半天,之后重新定义状态后几分钟就切了这道题. 然后是普通的树上背包状态转移 \[ dp[x][i]=m…
次元传送门:洛谷P1273 思路 一开始想的是普通树形DP 但是好像实现不大好 观摩了一下题解 是树上分组背包 设f[i][j]为以i为根的子树中取j个客户得到的总价值 我们可以以i为根有j组 在每一组中分别又取1个,2个,3个......n个客户 化为背包思想即 j为一共有j组 背包容量为每组的客户数总和 把该节点的每个儿子看成一组 每组中的元素为选一个,选两个...选n个用户 状态转移方程: f[i][j]=max(f[i][j],f[i][j-k]+f[v][k]-边权);//i为根 j为…
题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷即可 当情况为两个儿子时 其实我们只需要的是所有儿子中比较大的两个 所以我们在遍历当前点的所有儿子时取出最大值和次大值即可 最后的最大值为两种情况中的最大值 最后的答案为当前点的所有儿子权值的平方减去每个儿子本身的平方(容斥原理)+2*最大*次大(乘以2是因为每种情况有正反两种) 代码 #inclu…