自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等等.CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervised learning问题.两篇paper名字分别是:Revisiting Self-Supervised Visual Representation Learnin…
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作. 这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自…
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854…
定义:监督学习指的就是我们给学习算法一个数据集,这个数据集由“正确答案”组成,然后运用学习算法,算出更多的正确答案.术语叫做回归问题 [监督学习可分为]:回归问题.分类问题.两种 例:一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据.你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元.那基于这组数据,假如你有一个朋友他有一套 750 平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱? 解: 我们应用学习算法,可以在这组数据中画一条…
http://blog.csdn.net/jiandanjinxin/article/details/54087592 日前,LightOn CEO 兼联合创始人 Igor Carron 在其博客上放出了其收集到的 NIPS 2016 论文的实现(一共 22 个).他写道:「在 Reddit 上,peterkuharvarduk 决定编译所有来自 NIPS 2016 的可用实现,我很高兴他使用了『实现( implementation)』这个词,因为这让我可以快速搜索到这些项目.」除了 peter…
论文链接:https://arxiv.org/abs/1811.05320 最近发现博客好像会被CSDN和一些奇怪的野鸡网站爬下来?看见有人跟爬虫机器人单方面讨论问题我也蛮无奈的.总之原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 整理.精炼了一下这篇论文的思路. Abstract: 交通预测的难点在于交通拓扑网络复杂的结构与随时间动态发生的交通变化:为了提取交通网的空间与时间特征,文章提出了一种时间性的图卷积网络模型,结合了门…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…
题记:最近在做LLL(Life Long Learning),接触到了SSL(Semi-Supervised Learning)正好读到了谷歌今年的论文,也是比较有点开创性的,浅显易懂,对比实验丰富,非常适合缺乏基础科学常识和刚刚读研不会写论文的同学读一读,触类旁通嘛. 这篇论文思路等等也非常适合刚刚开始做学术时候写文论参考使用,你看,它有创造性(半监督学习用在了目标检测上),理论基础扎实(体现在专业词汇丰富,也介绍了其他相关论文,做个小综述论文都够了),工作量够够的(大量的对比试验),实验效果…
论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing Zhang, Haoyang Li, Yuxiao Dong, Hongzhi Yin, Cuiping Li论文来源:2020, ICML论文地址:download 论文代码:download 1 Introduction 图上的监督对比学习很难处理拥有较大的类内(intra-class)差异,…
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output. Supervised learning problems are categorized into "regression&qu…