pandas 中dataframe的操作】的更多相关文章

1.如何实现两个dataframe去重()? 假设df1是所有的数据,现在想去除与df2中重复的数据,也就是实现对df1进行操作,让他的数据不再包括df2. 方法一:先把需要剔除的df2的某一列(如id)用tolist输出成一个列表,然后前一个df用~isin(列表)来去除 例子: same_list=df2['ID'].tolist() df1=df1[~df1['ID'].isin(same_list)] 方法二:将df2先和df1合并,在利用drop_duplicates()去重 例子:…
先用pandas生成数据, import numpy as npimport pandas as pddf= pd.DataFrame(np.arange(30).reshape(6,5),columns=['a','b','c','d','e']) 1.找到指定行df.loc[1] 2.找到指定列df.loc[:,'b'] 3.找到某行某列df.loc[1,'b'] 输出6 4.找到某个区域df.loc[0:2,'a':'d'] 5.按照条件找 df.loc[df.d>8]…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part.csv') df.rename(columns={'time_stamp':'session_id'},inplace=True) print(df) df.to_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part-re…
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在index上索引,索引不到就在index的位置上进行索引(如果index非全整数),不包括end…
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"utf-8".(这个方法在上一篇博客有介绍) 据我个人经验总结(如果有错误,还希望大神斧正),在含有中文编码的情况下,to_csv()方法的encoding参数默认为"gbk",而read_csv()方法的encod…
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.online_service_startloan group by custId,applyNo 1.DataFrame去重 但是对于pandas的DataFrame格式就比较麻烦,我看了其他博客优化了如下三种方案. 我们先引入数据集: import pandas as pd data=pd.read_…
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1…
pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的数据类型 pd.read_excel(路径,sheet_name='业务员',usecols=['条形码','业务员自定义'],dtype={'外部平台单号':str}) 3.去重(删除重复项) excelData.drop_duplicates(keep='first') #去重保留第一个 4.表…
数据介绍 先随机生成一组数据: import pandas as pd import numpy as np state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'] year = [2000, 2001, 2002, 2003, 2004] pop = [1.3, 1.4, 1.6, 4.5, 2.7] frame = pd.DataFrame({'state': state, 'year': year, 'pop': pop}) print(f…
切片选择 #显示第一行数据print(df.head(1)) #显示倒数三行数据 print(df.tail(3)) loc  df.loc[row_index,col_index]  注意loc是根据行和列的索引进行选择的,行索引就是index,列索引就是列名. loc举例: df.loc[0,'age']=18 就能定位行索引为0,列名为‘age’的元素,然后可以直接赋值 df.loc[df.id=109,'age'] 这个就是找到id为109的索引号,然后列名还是age的元素,总之row_…
import numpy as np import pandas as pd This section will walk you(引导你) through the fundamental(基本的) mechanics(方法) of interacting(交互) with the data contained in a Series or DataFrame. -> (引导你去了解基本的数据交互, 通过Series, DataFrame). In the chapters to come, w…
目录 行的union pd.concat df.append 列的join pd.concat pd.merge df.join 行列转置 pivot stack & unstack melt 本文示例数据下载,密码:vwy3 import pandas as pd # 数据是之前在cnblog上抓取的部分文章信息 df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8') # 为了后续演示,抽样生成两个数据集 df1 =…
Pandas 是基于Numpy 的一种工具,是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. 安装命令:pip install pandas 具体操作如下:值得注意得是配置环境变量和添加项目路径要优先于导包 否则系统将检测不到pandas库 #导包 import os import sys #将脚本所在得工程添加到环境变量 绝对路径 sys.path.append(…
1.创建 1.1  标准格式创建 DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[]) In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2 Out[273]: one two three…
二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面. merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=Tr…
pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by in…
一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True): objs:需要连接的对象集合,一般是列表或字典: axis:连接轴向: join:参数为‘outer’或‘inner’: join_axes=[]:指定自定义的索…
1.df.dropna() 可以返回去掉NaN的df结果集. 2.pandas中dataframe取差集: df=pd.DataFrame({"name":[1,2,3,np.NaN,8],"value":[3,4,np.NaN,9,0]}) drop_na_df=df.dropna() na_symbols_df=pd.DataFrame(list(set(df["name"])^set(drop_na_df["name"]…
转自:http://blog.csdn.net/u011089523/article/details/60341016 用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd…
用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S…
假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字 那么可以用python的pandas库来实现. 方法一: pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多.如下是相关代码: import pandas as pd data = [["str","ewt","earw"],[&quo…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Index对象…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
用python做数据分析pandas库介绍之DataFrame基本操作   怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 这一部分主要学习pandas中基于前面两种数据结构的基本操作. 一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行a=DataFrame(data);a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据.a.tail(6)…
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看熊猫文档,但没有立即找到答案.   要选择列值等于标量some​​_value的行,请使用==: df.loc[df['column_name'] == some_value] 要选择其列值在可迭代值some_values中的行,请使用isin: df.loc[df['column_name'].i…
来自:Python那些事 pandas中accessor功能很强大,可以将它理解为一种属性接口,通过它获得额外的方法. 下面用代码和实例理解一下: import pandas as pd pd.Series._accessors 对于Series数据结构使用_accessors方法,我们得到3个对象:cat, str, dt. .cat:用于分类数据(Categorical data) .str:用于字符数据(String Object data) .dt:用于时间数据(datetime-lik…
pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值)• isnull方法 • 查看行:df.isnull().any(axis=1)  • 查看列:df.isnull().any(axis=0)• notnull方法:• 查看行:df.notnull().all(axis=1)• 查看列:df.notnull().all(axis=0…