Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要…
题目描述 Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收取Vi的费用.高速路刚建成时所有的路段都是免费的.政府部门根据实际情况,会不定期地对连续路段的收费标准进行调整,根据政策涨价或降价.无聊的小A同学总喜欢研究一些稀奇古怪的问题,他开车在这条高速路…
传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l,r][l,r]其中的一条边权为vvv的边[i−1,i][i-1,i][i−1,i]计算贡献次数. 显然对于所有方案,这条边的起点在[l,i−1][l,i-1][l,i−1],终点在[i,r][i,r][i,r],因此总贡献为(i−l)(r−i+1)v(i-l)(r-i+1)v(i−l)(r−i+1…
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 -------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;  …
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1…
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 上面咋算呢 先考虑每条边被算上的次数$ans = \sum_{i=l}^{r}a[i]*(r-i+1)(i-l+1)$ 我们把它拆开再合并瞎搞,按变量$i$的次数分项 蓝后化出来这个式子: $ans = (r - l- r*l+1) *S_{1}+ (l+r)*S_{2}-S_{3}$ $S_{1}…
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们可以把边也转化成一个序列,用$i$表示$(i,i+1)$这一条边,那么只要把区间的右端点减一即可 .发现下面的$C_{r-l+1}^2$很好计算,考虑怎么计算上面的,转化,我们考虑每条边会被算多少次,那么答案变成$$\sum_{i=l}^r\sum_{j=i}^r{sum(i,j)}=\sum_{i…
传送门 考虑每一段对答案的贡献 用每一段的左端点来表示当前这一段,那么区间就变成了[1,n-1] 如果询问区间[l,r],其中一个点的位置为x,则它对答案的贡献为(x-l)*(r-x)*s[x](s[x]为这一段的权值) 化简后得x*s[x]*(l+r-1)-s[x]*(l*r-r)-x*x*s[x] 那么我们就需要维护x*s[x],s[x],x*x*s[x] 其中还需要预处理出来x和x*x 然后就ok了 #include <cstdio> #include <cstring> #…
Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时候把\(r - 1\)就好了. 这里的期望显然就是路径的平均值. 期望值: \[\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}\] 下面部分可以直接算出: 上面这一部分比较难维护. 考虑每一条边会被走过多少次. \[ans = \su…
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2102  Solved: 887[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为…