想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
目录 摘要部分: I. Introduction II. Related Work III. Method **IMPORTANT PART A. RL agent training [第一步] B. PRM construction C. PRM-RL Querying IV. Results A. Indoor Navigation 1) Roadmap construction evaluation 2) Expected trajectory characteristics 3) Act…
前言与引用 这一个呢,主要是自己突然看一篇论文的时候不知道 为什么他提出的方法对于规划来说就是好的,规划又应该分为哪几个部分,解决的是哪几个部分的问题?带着这个问题,我就去搜:Motion Planning是什么?hhhh 然后从参考的知乎链接中到了这个课(其实我曾经在b站刷到过 但是当时我还没意识到自己的这一系列基础性问题 没问出问题,我向来是一个... 有问题再去学 再去找的 带着问题走) 知乎<Apollo Lattice Planner从学习到放弃.额不....到实践>:https:/…
张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重复任务执行学习不确定环境中的运动规划策略链接:https://pan.baidu.com/s/1TlSJn0fXuKEwZ9vts4xA6g 提取码:jwsd 复制这段内容后打开百度网盘手机App,操作更方便哦 Florence Tsang, Ryan A. Macdonald, and Steph…
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 本篇论文是针对现有表征算法计算开销比较大,不能够很好应用到大规模网络上的问题. (2) 主要贡献 Contribution: 提出一种快速且可扩展网络表征框架,LouvainNE,能够为包含数百亿边的网络生成高质量的表征向量. (3) 算法…
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现在常常用来处理属性网络表征的方式有两种:(1)在网络结构上传播属性(2)通过自编码器架构. 这两种常用的属性网络表征方法有各自的局限性和优点:(1)基于传播的方法依赖于网络中现有的边来传播信息,因此往往偏向于建模网络结构信息而非节点属性信息,从而更加擅长于处理结构信息(可以通过多层叠…
前言引用 [2] DSDNet Deep Structured self-Driving Network Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, Raquel Urtasun (ECCV 2020) 从这里我们进入了比较正式的期刊论文(我其实挺喜欢NVIDIA的写作风格类似于报告 但是比较易懂 让我们下次看看这篇吧)正式所以摘要很少 hhh 摘要 万事从摘要开始: In this paper, we propos…
Sensor/组织: Uber Status: Reading Summary: 非常棒!端到端输出map中间态 一种建图 感知 预测 规划的通用框架 Type: CVPR Year: 2021 引用量: 20 参考与前言 论文链接: https://openaccess.thecvf.com/content/CVPR2021/papers/Casas_MP3_A_Unified_Model_To_Map_Perceive_Predict_and_Plan_CVPR_2021_paper.pdf…
AlphaTensor论文阅读分析 目前只是大概了解了AlphaTensor的思路和效果,完善ing deepmind博客在 https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor 论文是 https://www.nature.com/articles/s41586-022-05172-4 解决"如何快速计算矩阵乘法"的问题 问题建模 变成single-player game \[\tau_…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…