1. pairwise from sklearm.metrics.pairwise import pairwise_distance 计算一个样本集内部样本之间的距离: D = np.array([np.linalg.norm(r1-r2) for r1 in X] for r2 in X) 当然,不要重复制造轮子,sklearn 已为我们提供了实现好的接口: D = pairwise_distance(X, X) # metric='euclidean'/'manhattan'/'cosine…