论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware composite deep neural network for speech enhancement[J]. Speech Communication,2022,136:1-13. 摘要 目前,利用深度神经网络(DNN)进行语音增强的大多数方法都面临着一些限制:它们没有利用相位谱中的信息,同时它们的高计算…
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et al. WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement[J]. IEEE Signal Processing Letters, 2020, 27: 2149…
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式:Zhu Y, Xu X, Ye Z. FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective funct…
论文链接:https://arxiv.org/abs/1506.04924 摘要 该文提出了基于混合标签的半监督分割网络.与当前基于区域分类的单任务的分割方法不同,Decoupled 网络将分割与分类任务分离,并为每个任务单独学习一个分离的网络.分类网络识别与图片相关的标签,然后在每个识别的标签中进行二进制的分割.Decoupled网络可以基于图像级别标签学习分类网络,基于像素级别标签学习分割网络.该网络通过桥链接层获得类别明确的激活maps来减少分割的搜索空间.该文在少量训练数据的条件下仍优于…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
我醉了呀,当我花一天翻译完后,发现已经网上已经有现成的了,而且翻译的比我好,哎,造孽呀,但是他写的是论文笔记,而我是纯翻译,能给读者更多的思想和理解空间,并且还有参考文献,也不错哈,反正翻译是写给自己看的 文章方向:语音分离, 论文地址:Conv-TasNet:超越理想的语音分离时频幅度掩蔽 博客地址:https://www.cnblogs.com/LXP-Never/p/14769751.html 论文代码:https://github.com/naplab/Conv-TasNet | htt…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Pruning by learning only the important connections. all connections with weights below a threshold are removed from the network. retrain the network to learn the…
读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep Neural Networks for Image Classification”…