R数据科学-3】的更多相关文章

学习R有不会的就查工具书<R数据科学>, 工具不是重点,创造价值才是目的.具体到数据科学,表现形式往往是提供解决方案或者做出某种决策.至于使用什么语言,采用什么工具,不本质.用 R 还是 Python 或者是 Julia, 都可以. 工具会影响单位时间内产出的效率.典型的数据分析场景下,生产力的标志可能并不是一开始就写一个保证高并发的服务框架,因为可能业务方向都还没定呢.所以此时的生产力标志往往是尽快发现问题,尽快验证各种模型,尽快做出合理决策. 学习参考: <R数据科学>高清中文…
R数据科学(R for Data Science) Part 3:编程 转换--可视化--模型 --------------第13章 使用magrittr进行管道操作-------------------- library(tidyverse) #管道不能支持以下函数: #①使用当前环境的函数:如assign/get/load assign("x",10) x "x" %>% assign(100) # 这里的赋值是由%>% 建立的临时环境进行的 env…
R数据科学(R for Data Science) Part 2:数据处理 导入-->整理-->转换 ------------------第7章 使用tibble实现简单数据框------------------- #tibble一种简单数据框 vignette("tibble") #创建tibble str(iris) str(as_tibble(iris)) tibble(x=1:5, y=1, z=x^2+y) #tribble(transposed tibble)转…
R数据科学(R for Data Science) Part 1:探索 by: PJX for 查漏补缺 exercise: https://jrnold.github.io/r4ds-exercise-solutions ------------前言------------------------------- library(tidyverse) #核心包:ggplot2/tibble/readr/purrr/dplyr/tidyr/forcats/stringr #更新 tidyverse…
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…
本文会持续将<数据科学实战手册(R+Python)>一书中的附带参考资料网址手打出来, 方便访问. 由于书中的参考资料网址太多, 这个文档将可能花费一段时间才能完成. 第一章 P7  Rstdio (http://www.rstdio.com/) 参考Gettinng Started with R文章: http://support.rstdio.com/hc/en-us/articles/201141096-Getting-Started-With-R 访问RStdio的主页: http:/…
上篇我们了解了Python中pandas内封装的关于数据框的常用操作方法,而作为专为数据科学而生的一门语言,R在数据框的操作上则更为丰富精彩,本篇就R处理数据框的常用方法进行总结: 1.数据框的生成 利用data.frame()函数来创建数据框,其常用参数如下: ...:数据框的构成向量的变量名,顺序即为生成的数据框列的顺序 row.names:对每一行命名的向量 stringAsFactors:是否将数据框中字符型数据类型转换为因子型,默认为FALSE > a <- 1:10 > b…
当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家提供一些在统计学习领域会用到的工具和技巧,涉及数据连接.数据处理.探索性数据分析.监督机器学习.非监督机器学习和模 型评估.选用的是R统计环境,所有代码示例都是用R语言编写的,涉及众多流行的R包和数据集. 适合数据科学家.数据分析师.软件开发者以及需要了解数据科学和机器学习方法的科研人员阅读参考. 学习参考:…
1.1 机器学习的分类 监督学习:线性回归或逻辑回归, 非监督学习:是K-均值聚类, 即在数据点集中找出“聚类”. 另一种常用技术叫做主成分分析(PCA) , 用于降维, 算法的评估方法也不尽相同. 最常用的方法是将均方根误差(RMSE) 的值降到最小, 这一数值用于评价测试集的预测结果是否准确. RMSE评价法会在第7章进行更深入的解释. 另一种常用的评估方法是AUC, 即ROC曲线下的面积. 1.8 使用R包 有大量的通用包(当前大约是7000个) , 其中很多涉及有用的统计方法, 也有特定…
文本文件是基本的文件类型,不管是csv, xls, json, 还是xml等等都可以按照文本文件的形式读取. #-*- coding: utf-8 -*- fpath = "data/textfile.txt" f = open(fpath, 'r') ## 按照字符读取字符 first_char = f.read(1) print "first char: ", first_char ## 改变文件对象的位置, 位置是按照bytesize计算的 ## 如果不把位置…